A linear bound on the Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces

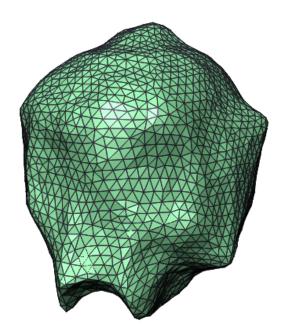
Dominique Attali

Laboratoire LIS

Jean-Daniel Boissonnat PRISME-INRIA

Introduction

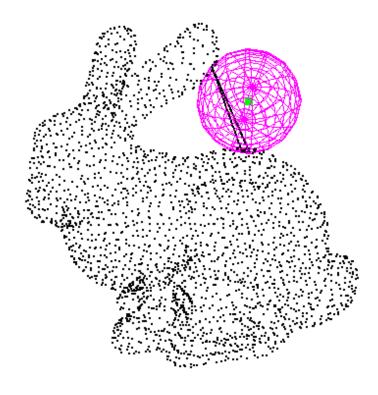
- Applications :
 - mesh generation
 - medial axis approximation
 - surface reconstruction



Question : Complexity of the Delaunay triangulation of points scattered over a surface ?

Complexity of the Delaunay triangulation

• Spheres circumscribing tetrahedra are empty

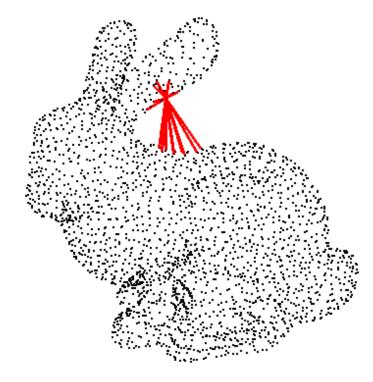


Convex hull

Data points

Complexity of the Delaunay triangulation

• Complexity = | Edges | > | Tetrahedra | > |Triangles|/4

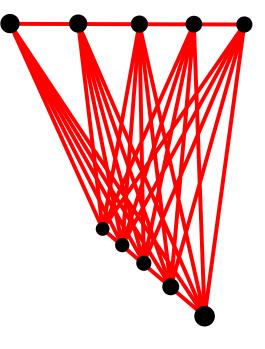


Delaunay neighbours

Convex hull

Complexity of the Delaunay triangulation

- For n points, in the worst-case:
 - in \mathbb{R}^3 , $\Omega(n^2)$



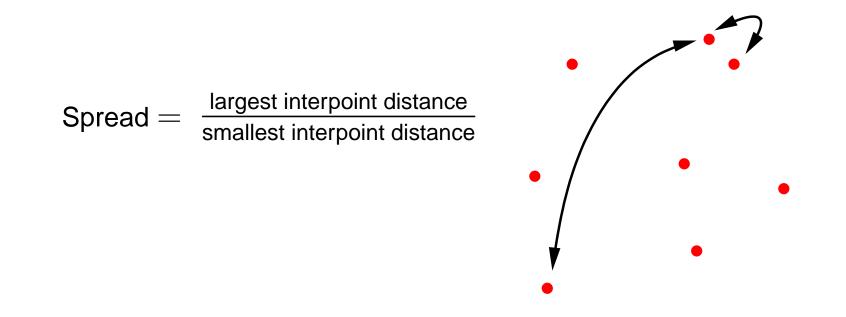
Goal : exhibit practical geometric constraints for subquadratic / linear bounds.

Probabilistic results

- $\bullet\,$ Expected complexity for n random points on
 - a ball : $\Theta(n)$ [Dwyer 1993]
 - a convex polytope : $\Theta(n)$ [Golin & Na 2000]
 - a polytope : $O(n \log^4 n)$ [Golin & Na 2002]

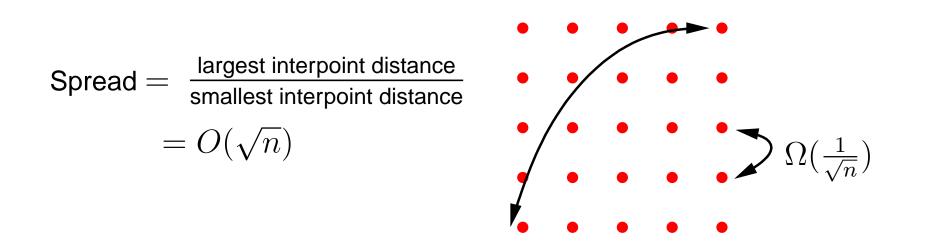
Deterministic results

• Wrt spread : $O(spread^3)$ [Erickson 2002]



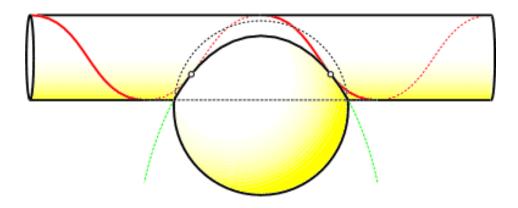
Deterministic results

- Wrt spread : $O(Spread^3)$ [Erickson 2002]
 - surfaces sampled with spread $O(\sqrt{n})$: $O(n\sqrt{n})$



Deterministic results

- Wrt spread : $O(Spread^3)$ [Erickson 2002]
 - surfaces sampled with spread $O(\sqrt{n})$: $O(n\sqrt{n})$
 - Well-sampled cylinder : $\Omega(n\sqrt{n})$



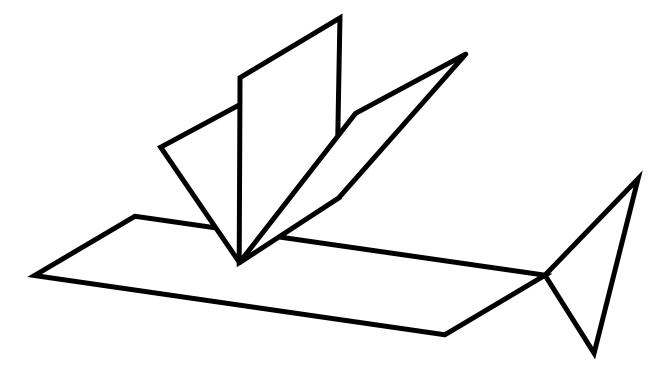
Our main result

For points distributed on a polyedral surface in \mathbb{R}^3 : the Delaunay triangulation is linear

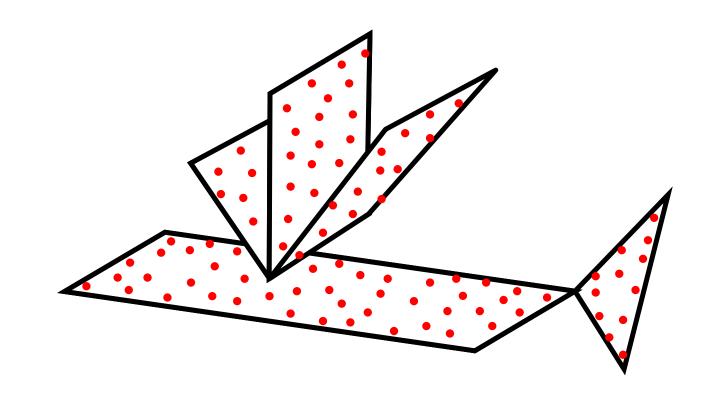
- Deterministic result
 - polyedral surface
 - sampling condition
 - proof

Polyedral surface

- Polyedral surface = Finite collection of facets that form a pur piece-wise linear complex
- Facet = bounded polygon



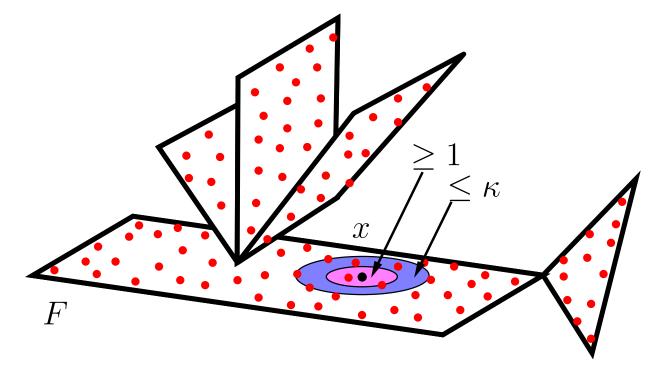
- $(\boldsymbol{\varepsilon}, \boldsymbol{\kappa})$ -sample E :
 - 1.
 - 2.



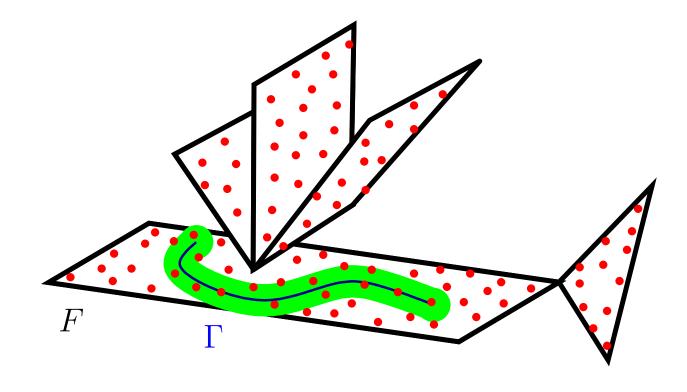
2.

- (ε, κ) -sample E :
 - 1. $\forall x \in F, B(x, \varepsilon)$ encloses at least one point of $E \cap F$
 - F

- (ε, κ) -sample E :
 - 1. $\forall x \in F, B(x, \varepsilon)$ encloses at least one point of $E \cap F$
 - 2. $\forall x \in F, B(x, 2\varepsilon)$ encloses at most κ points of $E \cap F$

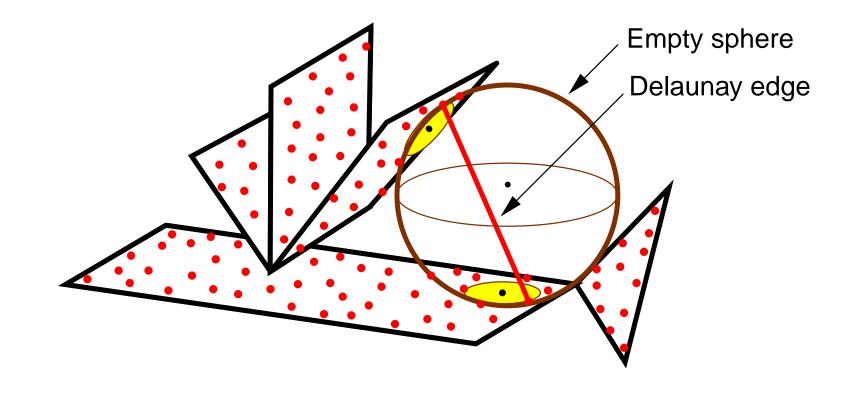


- $n = \Theta\left(\frac{1}{\varepsilon^2}\right)$
- $n(\Gamma \oplus \varepsilon) = O(length(\Gamma) \times \sqrt{n})$



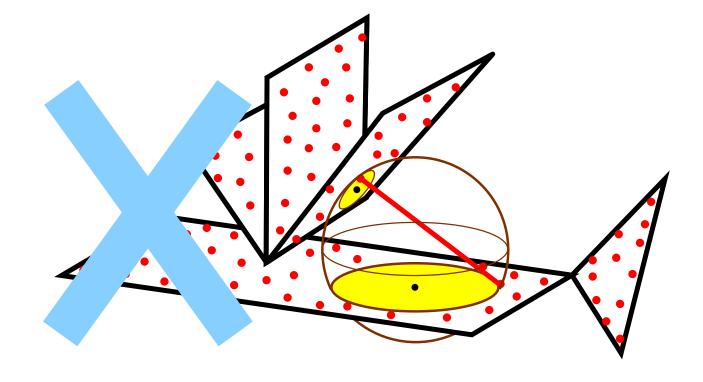
Delaunay triangulation

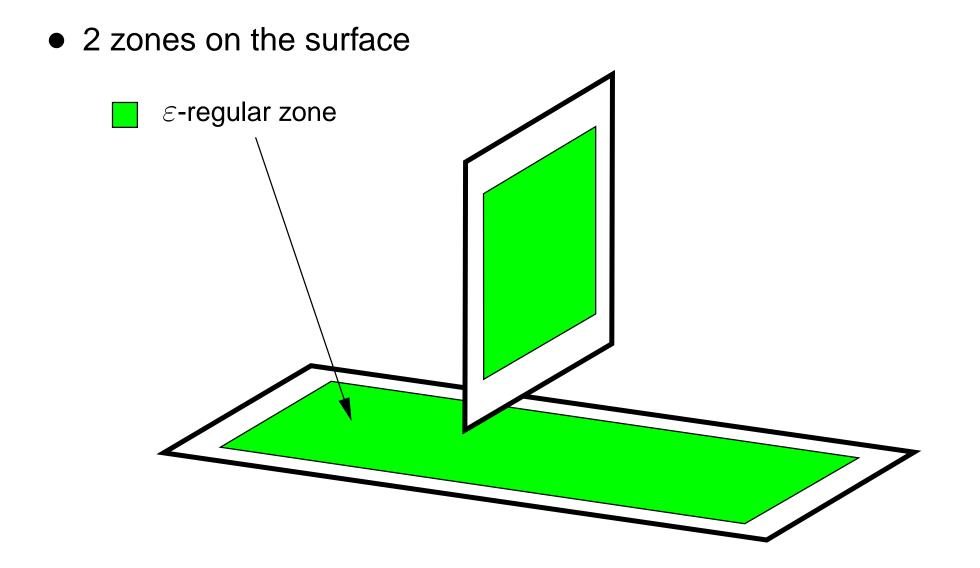
- Assumptions : (ε, κ) -sample of a polyedral surface
- Proof : Count Delaunay edges



Proof

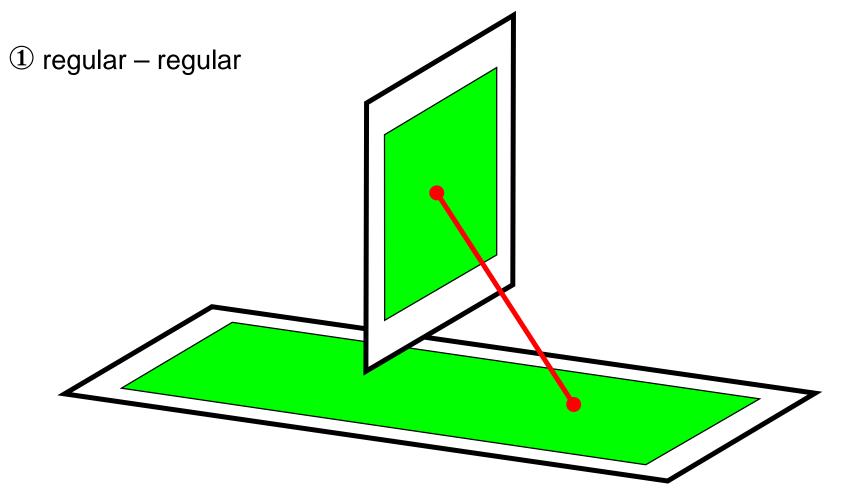
• Count Delaunay edges



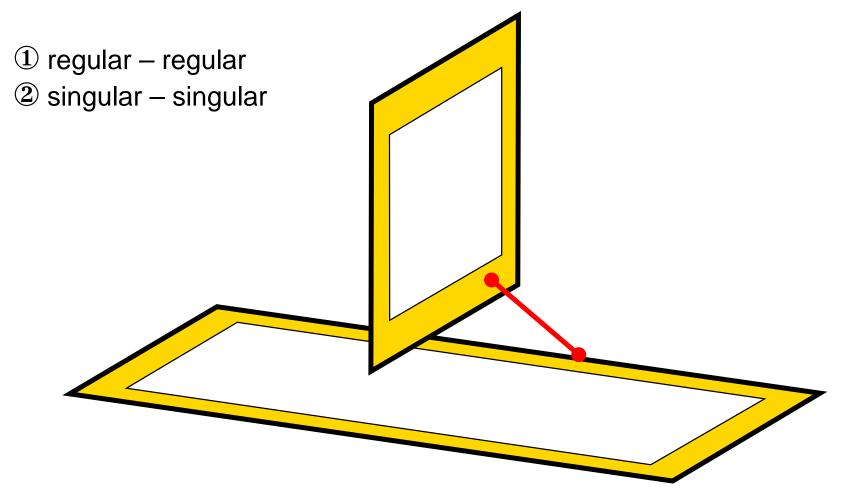


• 2 zones on the surface ε -regular zone ε -singular zone

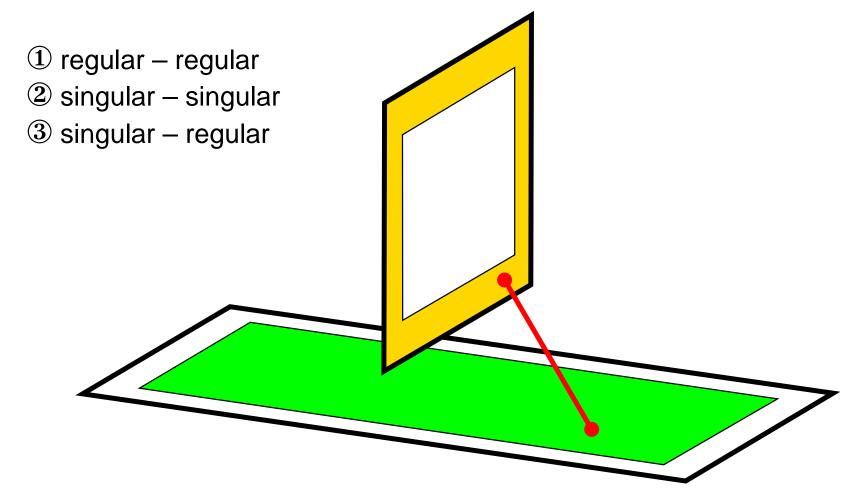
• 3 types of edges



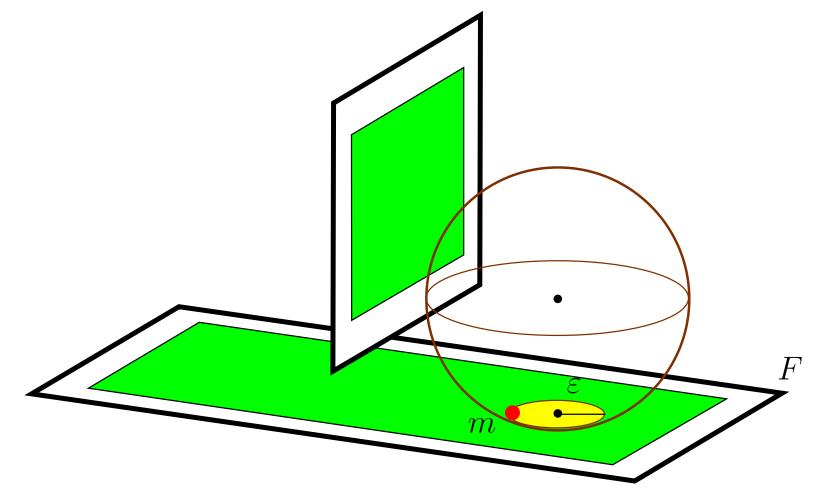
• 3 types of edges



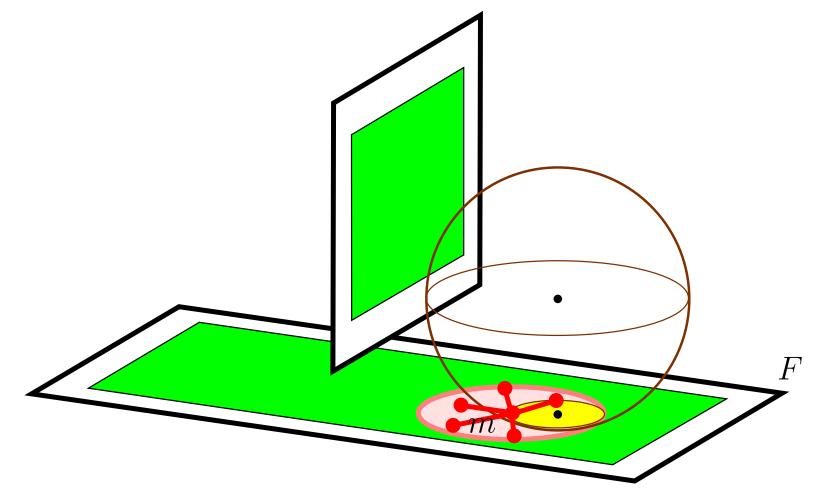
• 3 types of edges



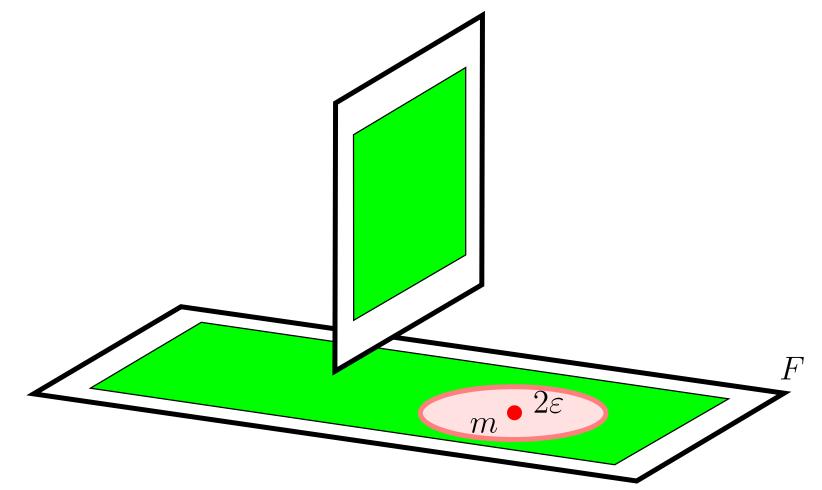
• A sample point has at most κ neighbours in its own facet



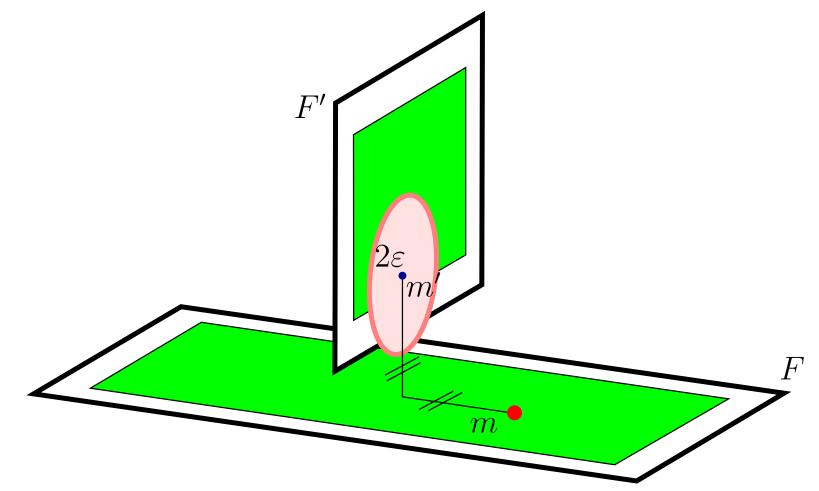
• A sample point has at most κ neighbours in its own facet



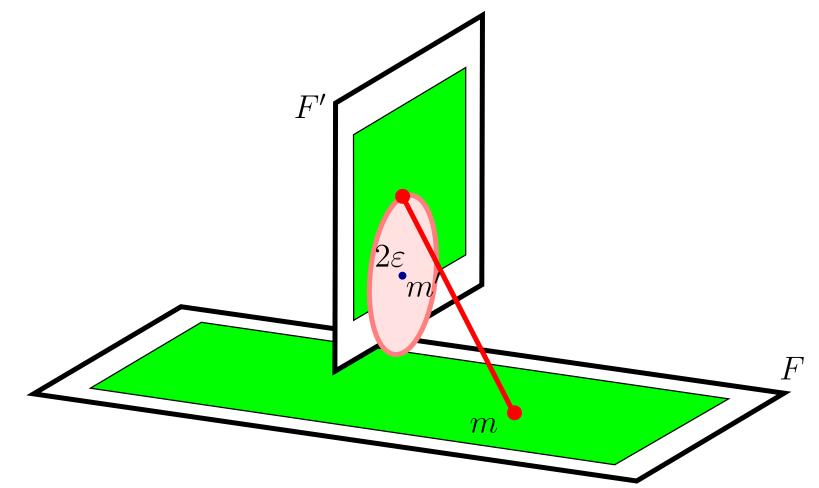
• A sample point has at most κ neighbours in its own facet



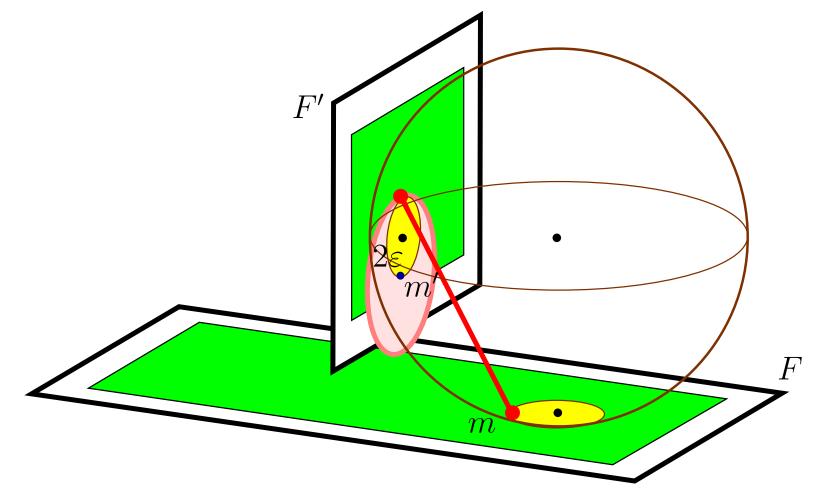
• A sample point has at most κ neighbours in any facet



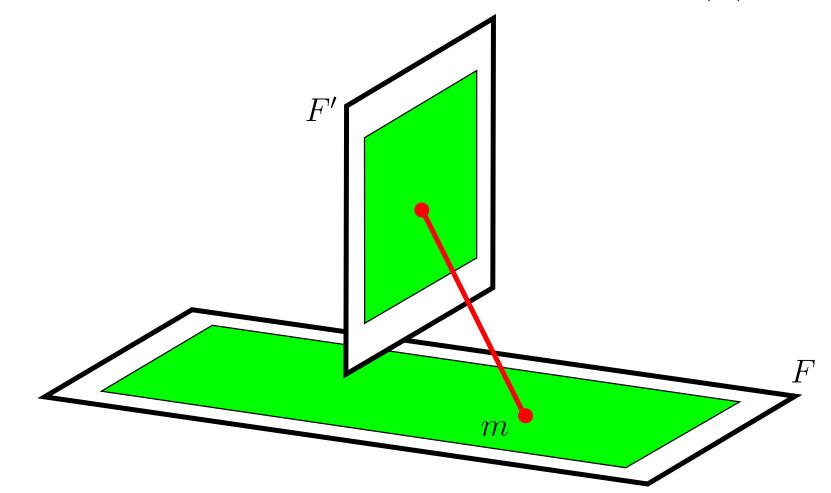
• A sample point has at most κ neighbours in any facet



• A sample point has at most κ neighbours in any facet

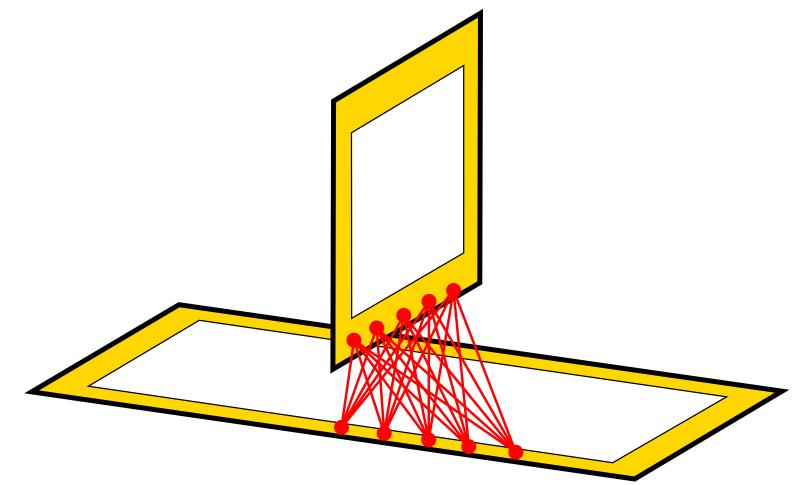


• Number of Delaunay edges in the regular zone : O(n)

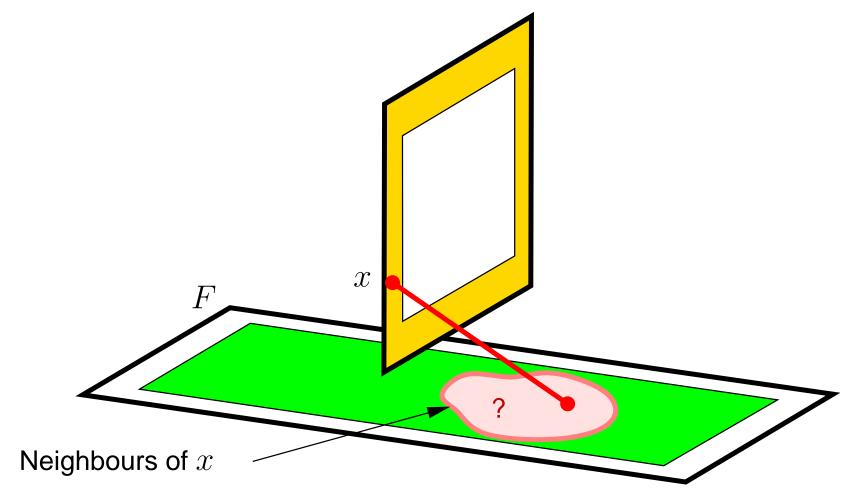


Singular - Singular

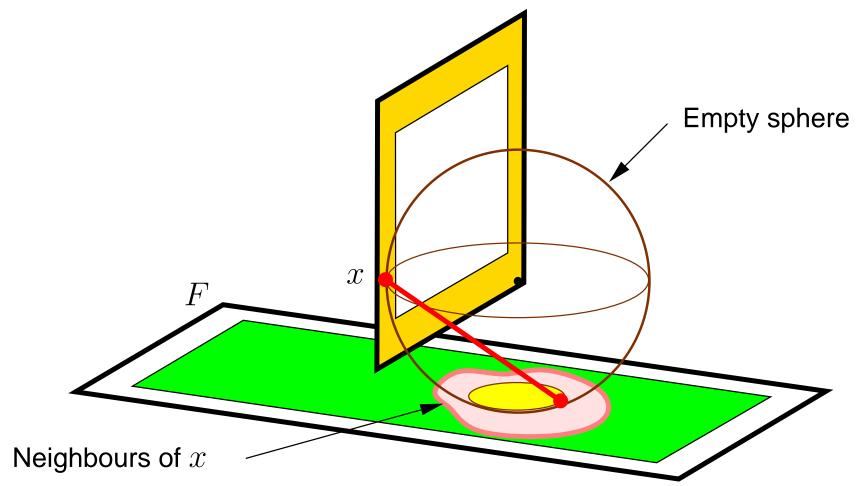
• Brutal force : $O(\sqrt{n}) \times O(\sqrt{n}) = O(n)$



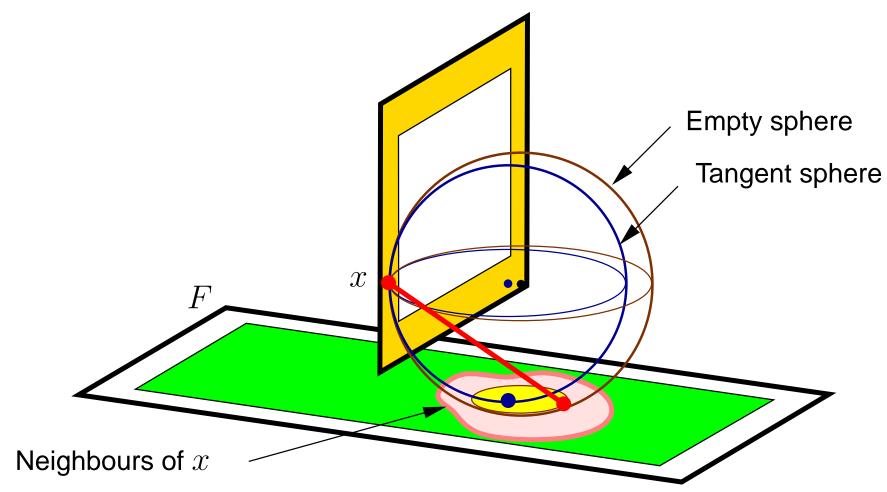
• Locate the neighbours of x in F



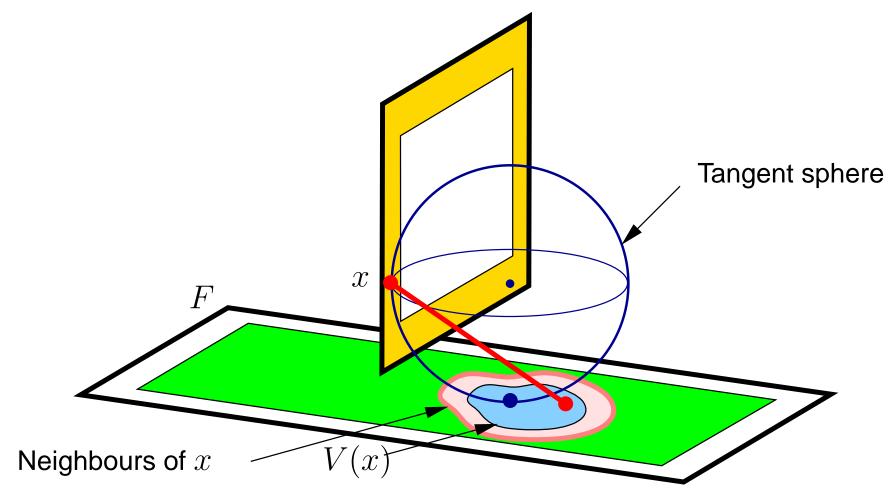
• Locate the neighbours of x in F

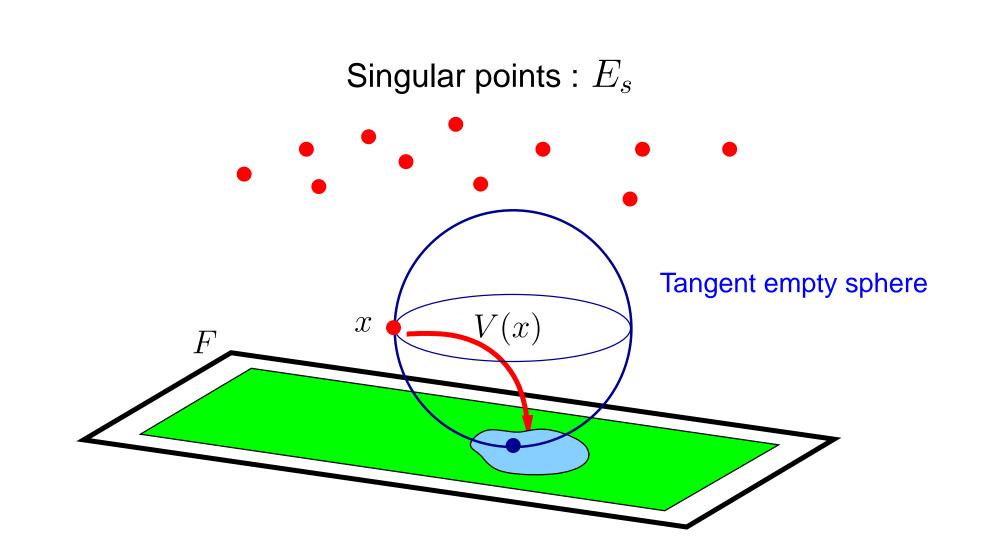


• Locate the neighbours of x in F



 $\bullet\,$ Neighbours of x : V(x) enlarged by 2ε





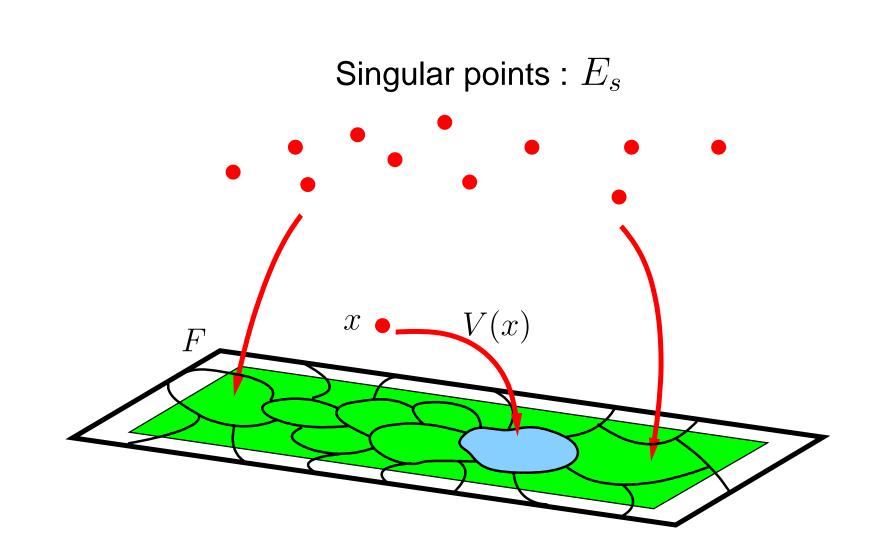


Diagram associated to F and points E_s

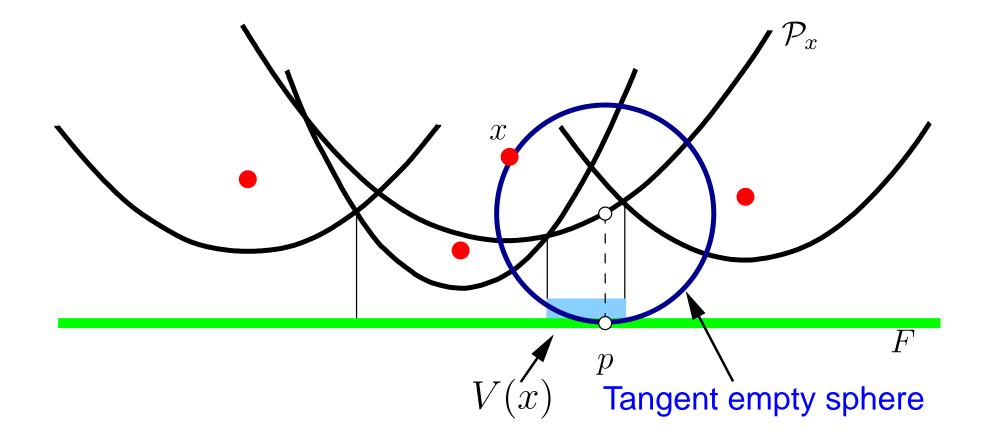


Diagram associated to F and points E_s

• Bissector of two points : a circle or a line

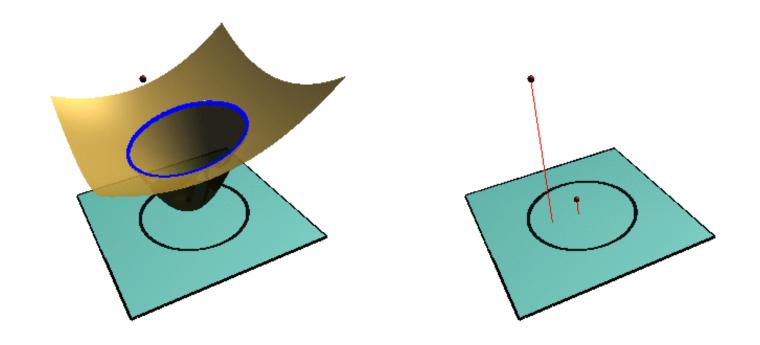
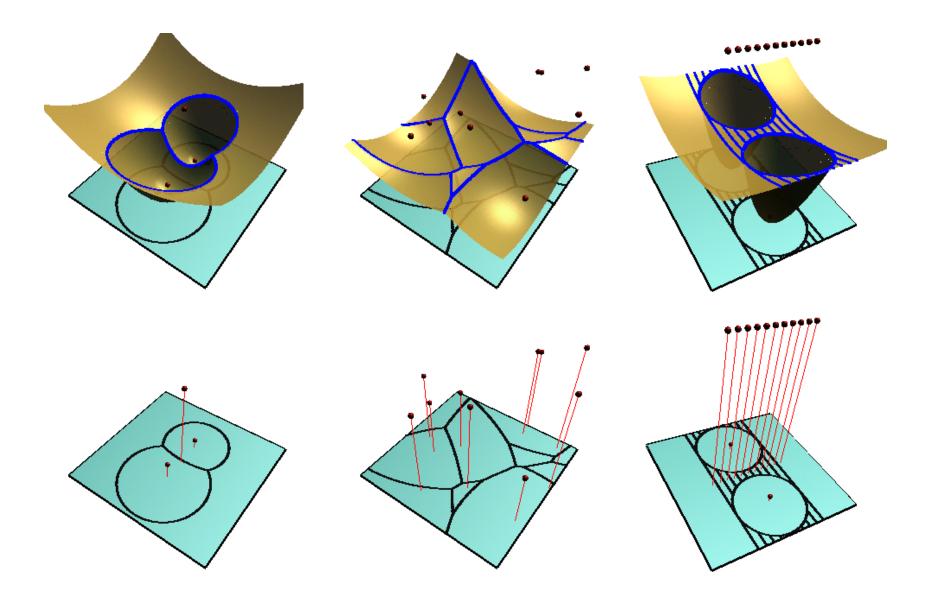
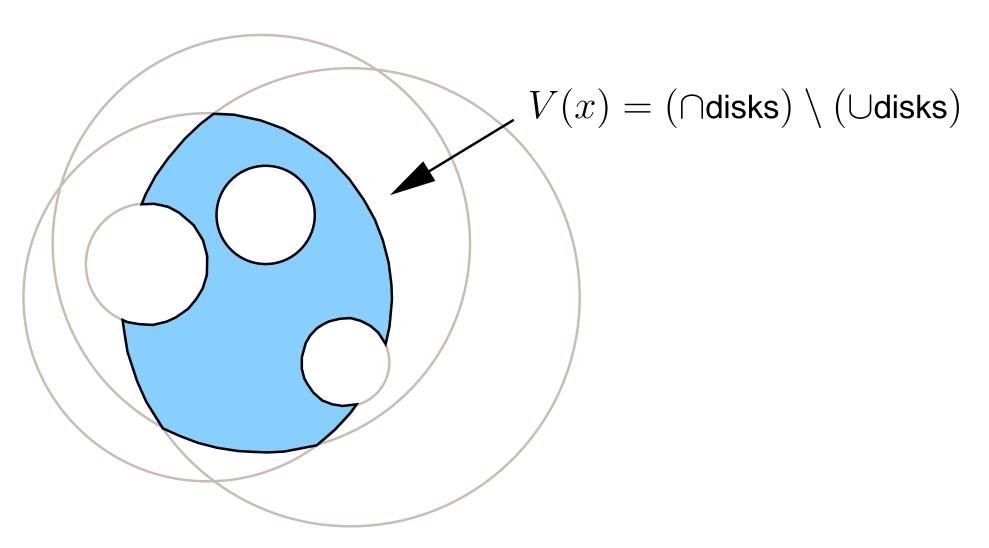


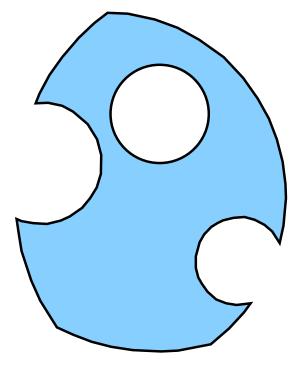
Diagram associated to F and points E_s

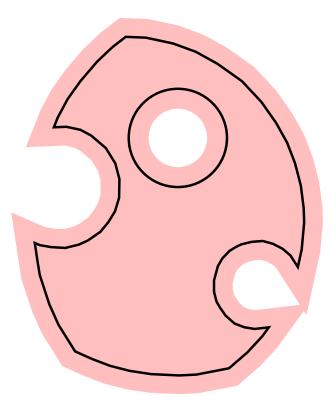


Delaunay edges between F and E_s



Delaunay edges between F and E_s

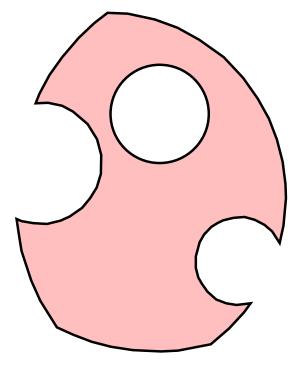


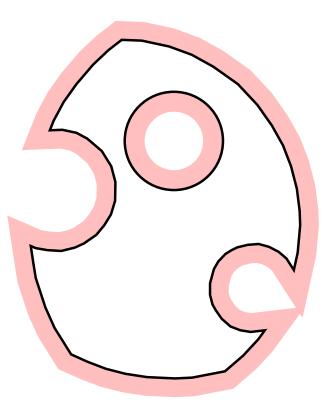


V(x)

Neighbours of \boldsymbol{x}

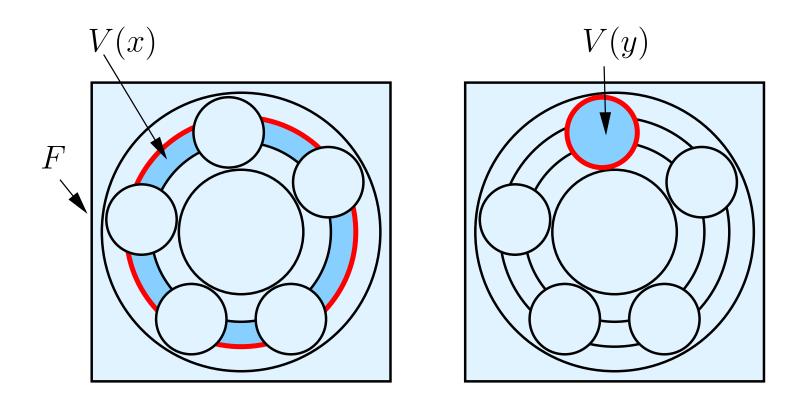
Delaunay edges between F and E_s



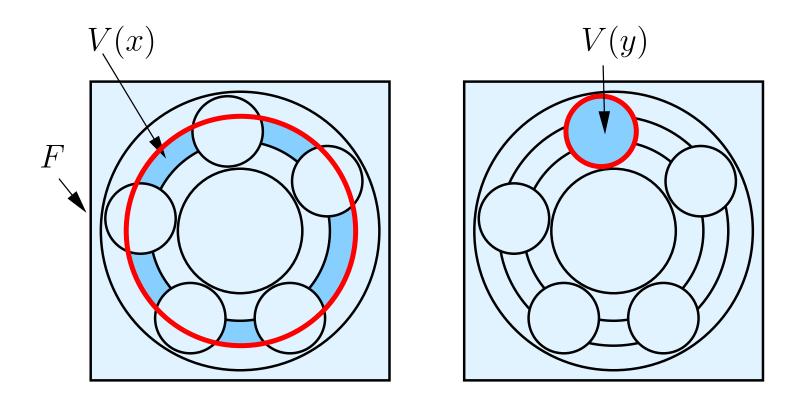


 $n(V(x)) + \operatorname{length}(\partial V(x)) \times \sqrt{n}$

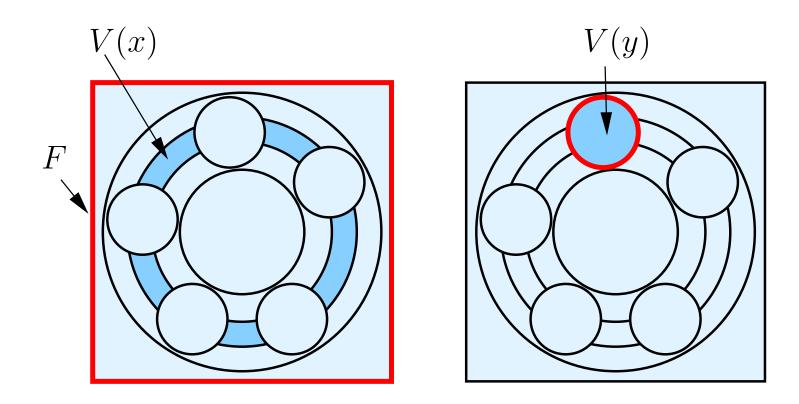
• Length of edges $\leq n(E_s) \times \partial F = O(\sqrt{n})$



• Length of edges $\leq n(E_s) \times \partial F = O(\sqrt{n})$



• Length of edges $\leq n(E_s) \times \partial F = O(\sqrt{n})$



Main result

Let S be a polyhedral surface and E a (ε,κ) -sample of S of size |E|=n. The number of edges in the Delaunay triangulation of E is at most :

$$\left(1 + \frac{C\kappa}{2} + 612\pi\kappa^2\frac{L^2}{A}\right)n$$

C : number of facets

A : area

 $L: \sum \text{length}(\partial \text{facet})$

Conclusion and perspective

- Linear bound for polyhedral surfaces
- Extend this result to generic surfaces