## A linear bound on the Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces

Dominique Attali
Laboratoire LIS

Jean-Daniel Boissonnat
PRISME-INRIA

## Introduction

- Applications :
- mesh generation
- medial axis approximation
- surface reconstruction


Question: Complexity of the Delaunay triangulation of points scattered over a surface?

## Complexity of the Delaunay triangulation

- Spheres circumscribing tetrahedra are empty


Data points


Convex hull

## Complexity of the Delaunay triangulation

- Complexity $=\mid$ Edges $|>|$ Tetrahedra $|>|$ Triangles $\mid / 4$


Delaunay neighbours
Convex hull

## Complexity of the Delaunay triangulation

- For $n$ points, in the worst-case:
$-\operatorname{in} \mathbb{R}^{3}, \Omega\left(n^{2}\right)$


Goal : exhibit practical geometric constraints for subquadratic / linear bounds.

## Probabilistic results

- Expected complexity for $n$ random points on
- a ball : $\Theta(n) \quad$ [Dwyer 1993]
- a convex polytope : $\Theta(n) \quad$ [Golin \& Na 2000]
- a polytope : $O\left(n \log ^{4} n\right) \quad$ [Golin \& Na 2002]


## Deterministic results

- Wrt spread : $O\left(\right.$ spread $\left.^{3}\right) \quad$ [Erickson 2002]

Spread $=\frac{\text { largest interpoint distance }}{\text { smallest interpoint distance }}$

## Deterministic results

- Wrt spread : $O\left(\right.$ Spread $\left.^{3}\right) \quad$ [Erickson 2002]
- surfaces sampled with spread $O(\sqrt{n}): O(n \sqrt{n})$

$$
\begin{aligned}
\text { Spread } & =\frac{\text { largest interpoint distance }}{\text { smallest interpoint distance }} \\
& =O(\sqrt{n})
\end{aligned}
$$



## Deterministic results

- Wrt spread : $O\left(\right.$ Spread $\left.^{3}\right) \quad$ [Erickson 2002]
- surfaces sampled with spread $O(\sqrt{n}): O(n \sqrt{n})$
- Well-sampled cylinder : $\Omega(n \sqrt{n})$



## Our main result

For points distributed on a polyedral surface in $\mathbb{R}^{3}$ : the Delaunay triangulation is linear

- Deterministic result
- polyedral surface
- sampling condition
- proof


## Polyedral surface

- Polyedral surface $=$ Finite collection of facets that form a pur piece-wise linear complex
- Facet $=$ bounded polygon



## Sampling condition

- $(\varepsilon, \kappa)$-sample $E$ :

1. 
2. 



## Sampling condition

- $(\varepsilon, \kappa)$-sample $E$ :

1. $\forall x \in F, B(x, \varepsilon)$ encloses at least one point of $E \cap F$
2. 



## Sampling condition

- $(\varepsilon, \kappa)$-sample $E$ :

1. $\forall x \in F, B(x, \varepsilon)$ encloses at least one point of $E \cap F$
2. $\forall x \in F, B(x, 2 \varepsilon)$ encloses at most $\kappa$ points of $E \cap F$


## Sampling condition

- $n=\Theta\left(\frac{1}{\varepsilon^{2}}\right)$
- $n(\Gamma \oplus \varepsilon)=O($ length $(\Gamma) \times \sqrt{n})$



## Delaunay triangulation

- Assumptions : $(\varepsilon, \kappa)$-sample of a polyedral surface
- Proof : Count Delaunay edges



## Proof

- Count Delaunay edges



## Counting Delaunay edges

- 2 zones on the surface



## Counting Delaunay edges

- 2 zones on the surface
$\square \varepsilon$-regular zone
$\square \varepsilon$-singular zone



## Counting Delaunay edges

- 3 types of edges
(1) regular - regular



## Counting Delaunay edges

- 3 types of edges
(1) regular - regular
(2) singular - singular


## Counting Delaunay edges

- 3 types of edges
(1) regular - regular
(2) singular - singular
(3) singular - regular



## Regular - Regular

- A sample point has at most $\kappa$ neighbours in its own facet



## Regular - Regular

- A sample point has at most $\kappa$ neighbours in its own facet



## Regular - Regular

- A sample point has at most $\kappa$ neighbours in its own facet



## Regular - Regular

- A sample point has at most $\kappa$ neighbours in any facet



## Regular - Regular

- A sample point has at most $\kappa$ neighbours in any facet



## Regular - Regular

- A sample point has at most $\kappa$ neighbours in any facet



## Regular - Regular

- Number of Delaunay edges in the regular zone: $O(n)$



## Singular - Singular

- Brutal force : $O(\sqrt{n}) \times O(\sqrt{n})=O(n)$



## Singular - Regular

- Locate the neighbours of $x$ in $F$



## Singular - Regular

- Locate the neighbours of $x$ in $F$



## Singular - Regular

- Locate the neighbours of $x$ in $F$



## Singular - Regular

- Neighbours of $x: V(x)$ enlarged by $2 \varepsilon$



## Singular - Regular

Singular points: $E_{s}$


## Singular - Regular

Singular points: $E_{s}$


## Diagram associated to $F$ and points $E_{s}$



## Diagram associated to $F$ and points $E_{s}$

- Bissector of two points : a circle or a line


Diagram associated to $F$ and points $E_{s}$


## Delaunay edges between $F$ and $E_{s}$



## Delaunay edges between $F$ and $E_{s}$


$V(x)$


Neighbours of $x$

## Delaunay edges between $F$ and $E_{s}$



$$
n(V(x)) \quad+\quad \text { length }(\partial V(x)) \times \sqrt{n}
$$

## Singular - Regular

- Length of edges $\leq n\left(E_{s}\right) \times \partial F=O(\sqrt{n})$



## Singular - Regular

- Length of edges $\leq n\left(E_{s}\right) \times \partial F=O(\sqrt{n})$



## Singular - Regular

- Length of edges $\leq n\left(E_{s}\right) \times \partial F=O(\sqrt{n})$



## Main result

Let $S$ be a polyhedral surface and $E$ a $(\varepsilon, \kappa)$-sample of $S$ of size $|E|=n$. The number of edges in the Delaunay triangulation of $E$ is at most :

$$
\left(1+\frac{C \kappa}{2}+612 \pi \kappa^{2} \frac{L^{2}}{A}\right) n
$$

$C$ : number of facets
$A$ : area
$L: \sum \operatorname{length}(\partial$ facet $)$

## Conclusion and perspective

- Linear bound for polyhedral surfaces
- Extend this result to generic surfaces

