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Introduction

• Applications :

– mesh generation

– medial axis approximation

– surface reconstruction

Question : Complexity of the Delaunay triangulation of points

scattered over a surface ?
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Complexity of the Delaunay triangulation

• Spheres circumscribing tetrahedra are empty

Data points Convex hull
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Complexity of the Delaunay triangulation

• Complexity = | Edges | > | Tetrahedra | > |Triangles|/4

Delaunay neighbours Convex hull
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Complexity of the Delaunay triangulation

• For n points, in the worst-case:

– in R3, Ω(n2)

Goal : exhibit practical geometric constraints

for subquadratic / linear bounds.
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Probabilistic results

• Expected complexity for n random points on

– a ball : Θ(n) [Dwyer 1993]

– a convex polytope : Θ(n) [Golin & Na 2000]

– a polytope : O(n log4 n) [Golin & Na 2002]
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Deterministic results

• Wrt spread : O(spread3) [Erickson 2002]

Spread =
largest interpoint distance

smallest interpoint distance
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Deterministic results

• Wrt spread : O(Spread3) [Erickson 2002]

– surfaces sampled with spread O(
√

n) : O(n
√

n)

largest interpoint distance
smallest interpoint distance

Spread =

= O(
√

n) Ω( 1√
n
)
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Deterministic results

• Wrt spread : O(Spread3) [Erickson 2002]

– surfaces sampled with spread O(
√

n) : O(n
√

n)

– Well-sampled cylinder : Ω(n
√

n)
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Our main result

For points distributed on a polyedral surface in R3 : the

Delaunay triangulation is linear

• Deterministic result

– polyedral surface

– sampling condition

– proof
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Polyedral surface

• Polyedral surface = Finite collection of facets that form a pur

piece-wise linear complex

• Facet = bounded polygon
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Sampling condition

• (ε, κ)-sample E :

1.

2.
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Sampling condition

• (ε, κ)-sample E :

1. ∀x ∈ F , B(x, ε) encloses at least one point of E ∩ F

2.

≥ 1

F

x
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Sampling condition

• (ε, κ)-sample E :

1. ∀x ∈ F , B(x, ε) encloses at least one point of E ∩ F

2. ∀x ∈ F , B(x, 2ε) encloses at most κ points of E ∩ F

x
≤ κ

≥ 1

F
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Sampling condition

• n = Θ
( 1

ε2

)
• n(Γ⊕ ε) = O( length(Γ)×

√
n )

ΓF
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Delaunay triangulation

• Assumptions : (ε, κ)-sample of a polyedral surface

• Proof : Count Delaunay edges

Empty sphere

Delaunay edge
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Proof

• Count Delaunay edges
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Counting Delaunay edges

• 2 zones on the surface

ε-regular zone
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Counting Delaunay edges

• 2 zones on the surface

ε-regular zone

ε-singular zone
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Counting Delaunay edges

• 3 types of edges

① regular – regular
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Counting Delaunay edges

• 3 types of edges

① regular – regular
② singular – singular
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Counting Delaunay edges

• 3 types of edges

① regular – regular
② singular – singular
③ singular – regular
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Regular - Regular

• A sample point has at most κ neighbours in its own facet

Fε
m
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Regular - Regular

• A sample point has at most κ neighbours in its own facet

F

m
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Regular - Regular

• A sample point has at most κ neighbours in its own facet

F
2ε

m



SM’2002 26

Regular - Regular

• A sample point has at most κ neighbours in any facet

F

F ′

2ε

m

m′



SM’2002 27

Regular - Regular

• A sample point has at most κ neighbours in any facet

F

F ′

2ε
m′

m
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Regular - Regular

• A sample point has at most κ neighbours in any facet

F

F ′

2ε
m′

m



SM’2002 29

Regular - Regular

• Number of Delaunay edges in the regular zone : O(n)

F

F ′

m
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Singular - Singular

• Brutal force : O(
√

n)×O(
√

n) = O(n)
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Singular - Regular

• Locate the neighbours of x in F

F

Neighbours of x

?

x
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Singular - Regular

• Locate the neighbours of x in F

Empty sphere

F

Neighbours of x

x
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Singular - Regular

• Locate the neighbours of x in F

Empty sphere

F

Neighbours of x

Tangent sphere

x
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Singular - Regular

• Neighbours of x : V (x) enlarged by 2ε

Tangent sphere

F

Neighbours of x V (x)

x
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Singular - Regular

F V (x)

Singular points : Es

Tangent empty sphere

x
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Singular - Regular

Singular points : Es

F V (x)x
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Diagram associated to F and points Es

Tangent empty sphere

Px

F

V (x)

x

p
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Diagram associated to F and points Es

• Bissector of two points : a circle or a line
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Diagram associated to F and points Es
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Delaunay edges between F and Es

V (x) = (∩disks) \ (∪disks)
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Delaunay edges between F and Es

Neighbours of xV (x)
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Delaunay edges between F and Es

n(V (x)) + length(∂V (x))×
√

n
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Singular - Regular

• Length of edges ≤ n(Es)× ∂F = O(
√

n)

V (x) V (y)

F
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Singular - Regular

• Length of edges ≤ n(Es)× ∂F = O(
√

n)

V (x) V (y)

F
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Singular - Regular

• Length of edges ≤ n(Es)× ∂F = O(
√

n)

V (x) V (y)

F
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Main result

Let S be a polyhedral surface and E a (ε, κ)-sample of S of size

|E| = n. The number of edges in the Delaunay triangulation of E is at

most : (
1 +

C κ

2
+ 612 π κ2 L2

A

)
n

C : number of facets

A : area

L :
∑

length(∂facet)
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Conclusion and perspective

• Linear bound for polyhedral surfaces

• Extend this result to generic surfaces


