A linear bound on the Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces	Introduction - Applications : - mesh generation - medial axis approximation - surface reconstruction Question : Complexity of the Delaunay triangulation of points scattered over a surface ?	Complexity of the Delaunay triangulation - Spheres circumscribing tetrahedra are empty Data points Convex hull	Complexity of the Delaunay triangulation - Complexity = \mid Edges $\|>\|$ Tetrahedra $\|>\|$ Triangles $\mid / 4$ Delaunay neighbours Convex hull
Complexity of the Delaunay triangulation - For n points, in the worst-case: - in $\mathbb{R}^{3}, \Omega\left(n^{2}\right)$ Goal : exhibit practical geometric constraints for subquadratic / linear bounds.	SM2002	Deterministic results - Wrt spread : $O\left(\right.$ spread $\left.^{3}\right) \quad$ [Erickson 2002] $\text { Spread }=\frac{\text { largest interpoint distance }}{\text { smallest interpoint distance }}$	Deterministic results - Wrt spread : $O\left(\right.$ Spread $\left.^{3}\right) \quad$ [Erickson 2002] - surfaces sampled with spread $O(\sqrt{n}): O(n \sqrt{n})$ $\begin{aligned} \text { Spread } & =\frac{\text { largest interpoint distance }}{\text { smallest interpoint distance }} \\ & =O(\sqrt{n}) \end{aligned}$
Deterministic results - Wrt spread : $O\left(\right.$ Spread $\left.^{3}\right) \quad$ [Erickson 2002] - surfaces sampled with spread $O(\sqrt{n}): O(n \sqrt{n})$ - Well-sampled cylinder : $\Omega(n \sqrt{n})$	Our main result For points distributed on a polyedral surface in \mathbb{R}^{3} : the Delaunay triangulation is linear - Deterministic result - polyedral surface - sampling condition - proof	Polyedral surface - Polyedral surface $=$ Finite collection of facets that form a pur piece-wise linear complex - Facet $=$ bounded polygon	Sampling condition - (ε, κ)-sample E : 1. 2.
Sampling condition - (ε, κ)-sample E : 1. $\forall x \in F, B(x, \varepsilon)$ encloses at least one point of $E \cap F$ 2.	Sampling condition - (ε, k)-sample E : 1. $\forall x \in F, B(x, \varepsilon)$ encloses at least one point of $E \cap F$ 2. $\forall x \in F, B(x, 2 \varepsilon)$ encloses at most κ points of $E \cap F$	Sampling condition - $n=\Theta\left(\frac{1}{\varepsilon^{2}}\right)$ - $n(\Gamma \oplus \varepsilon)=O($ length $(\Gamma) \times \sqrt{n})$	Delaunay triangulation - Assumptions : (ε, κ)-sample of a polyedral surface - Proof : Count Delaunay edges

