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Abstract1

Given a finite set of points P sampling an unknown smooth surfaceM⊆ R3, our goal is to triangulate2

M based solely on P . Assuming M is a smooth orientable submanifold of codimension 1 in Rd,3

we introduce a simple algorithm, Naive Squash, which simplifies the α-complex of P by repeatedly4

applying a new type of collapse called vertical relative to M. Naive Squash also has a practical5

version that does not require knowledge of M. We establish conditions under which both the6

naive and practical Squash algorithms output a triangulation ofM. We provide a bound on the7

angle formed by triangles in the α-complex withM, yielding sampling conditions on P that are8

competitive with existing literature for smooth surfaces embedded in R3, while offering a more9

compartmentalized proof. As a by-product, we obtain that the restricted Delaunay complex of P10

triangulatesM whenM is a smooth surface in R3 under weaker conditions than existing ones.11
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XX:2 When Alpha-Complexes Collapse Onto Codimension-1 Submanifolds

1 Introduction12

Given a finite set of points P that sample an unknown smooth surfaceM⊆ R3 (example in13

Figure 1a), we aim to approximateM based solely on P . This problem, known as surface14

reconstruction, has been widely studied [2,11,14,17,36–38,41]. Several algorithms based on15

computational geometry have been developed, such as Crust [3], PowerCrust [5], Cocone [4],16

Wrap [27] and variants based on flow complexes [13,25,34,35]. These algorithms rely on the17

Delaunay complex of P and offer theoretical guarantees, summarized in [23].18

The most desirable guarantee is that the reconstruction outputs a triangulation ofM,19

that is, a simplicial complex whose support is homeomorphic toM, in which case we call the20

algorithm topologically correct. That has been established for many of the aforementioned21

algorithms, assuming that P is noiseless (P ⊆ M) and sufficiently dense. Specifically, let22

R > 0 be a lower bound on the reach of M, and ε ≥ 0 an upper bound on the distance23

between any point ofM and its nearest point in P . Both Crust and Cocone are topologically24

correct under the condition ε
R ≤ 0.06 [24], which, to our knowledge, is the weakest such25

constraint guaranteeing topological correctness for surface reconstruction algorithms in R3.26

Surface reconstruction generalizes to approximating an unknown smooth submanifold27

M⊆ Rd from a finite sample P . One approach in that case, similar to the Wrap algorithm in28

R3, involves collapses, which are typically applied to complexes like the α-complex [12]. The29

α-complex of P [28,29,31] includes simplices whose circumspheres have radius ≤ α and enclose30

no other points of P [30]. For well-chosen α, the α-complex has the same homotopy type as31

M [8,18,19,40], provided that P is sufficiently dense and has low noise relative to the reach32

ofM. However, it may still fail to capture the topology ofM, as illustrated in Figure 1b:33

forM⊆ R3, the α-complex of P includes slivers, tetrahedra that have one dimension more34

thanM, preventing the existence of a homeomorphism. Slivers complicate reconstructing35

k-dimensional submanifolds in Rd for k ≥ 2 for all Delaunay-based reconstruction attempts.36

Contributions. We introduce a simple algorithm, NaiveVerticalSimplification, which37

takes as input a simplicial complex K and simplifies it by applying collapses guided by the38

knowledge ofM. We call it naive because this knowledge is non-realistic in practice. We39

find conditions under which the algorithm is topologically correct for smooth orientable sub-40

manifoldsM of Rd with codimension one. Its variant, PracticalVerticalSimplification,41

does not rely onM and remains topologically correct, though it requires stricter conditions.42

When applying both algorithms to the α-complex of P and returning the result, we obtain43

two reconstruction algorithms which we refer to as NaiveSquash and PracticalSquash,44

respectively. We determine conditions on the inputs P and α that guarantee the topological45

correctness of these squash algorithms. Moreover, for d = 3, we show that PracticalSquash46

is correct under the sampling condition ε
R ≤ 0.178 (see Figure 1c for an example output),47

while NaiveSquash is correct for ε
R ≤ 0.225, assuming suitable choice of α. We also show48

that the restricted Delaunay complex [16] is generically homeomorphic toM when ε
R ≤ 0.225.49

In addition, while proving these results, we derive an upper bound for when triangles50

with vertices on a smooth submanifoldM⊆ Rd form a small angle withM: for a triangle51

abc with a, b, c ∈M, longest edge bc, and circumradius ρ, we show that the angle between52

the affine space spanned by abc and the tangent space toM at a satisfies:53

sin∠Aff(abc),TaM ≤
√

3 ρ
R

. (1)54
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(a) (b) (c)

Figure 1 Points sampling a surface in R3 (a) with the corresponding α-complex, where tetrahedra
are highlighted (b). Applying Practical Squash with parameter α outputs (c).

55

56

Techniques. Our proof of correctness for the squash algorithms is more compartmentalized57

than the ones present in the literature: we first consider a smooth orientable submanifold58

M ⊆ Rd with codimension one and a general simplicial complex K embedded in Rd and59

contained within a small tubular neighborhood of M. We introduce vertical collapses60

(relative toM) in K which remove d-simplices of K that either have no d-simplices of K61

above them in directions normal to M or no d-simplices of K below them in directions62

normal toM. NaiveVerticalSimplification iteratively applies vertical collapses relative63

toM. PracticalVerticalSimplification does not depend on knowledge ofM and applies64

vertical collapses relative to a hyperplane, constructed dynamically based on the simplex65

currently considered for collapse.66

We examine conditions for the correctness of these algorithms. Apart from the requirement67

that K has no vertical i-simplices relative toM for 0 < i < d and that its support projects68

ontoM and fully covers it, we require the vertical convexity of K relative toM. This means69

that each normal line toM at a point m (restricted to a small ball around m) intersects70

the support of K in a convex set. For PracticalVerticalSimplification, an additional71

requirement is that the (d− 1)-simplices of K must form an angle of at most π
4 withM.72

Afterwards, we present PracticalSquash and NaiveSquash, which initialize the previous73

algorithms with K as the α-complex of a point set P ⊆ Rd that samplesM. We show that74

correctness is guaranteed when the i-simplices in the α-complex form small angles withM75

for 0 < i < d. We provide explicit upper bounds for these angles, expressed in terms of ε, δ,76

and α, where ε and δ control the sample density and noise in P .77

We analyze the case d = 3 and provide numerical bounds on the ratios ε
R and α

R that78

ensure the correctness of both squash algorithms. Instrumental to this step, we derive (1)79

which enables us to upper bound the angles of triangles in the α-complex relative to the80

manifold and is of independent interest.81

Related work. The Squash algorithms (both practical and naive) are similar to Wrap [12,31]82

in that they compute a subcomplex K of the Delaunay complex of P and then perform a83

sequence of collapses. However, the selection of K and the nature of the collapses differ84

between the two methods: in the naive squash, definitions are relative toM, unlike Wrap,85

which uses flow lines derived from P to guide the collapsing sequence. This distinction allows86

us to address the general case first and then focus on the specific case of the α-complex.87

Moreover, while we guarantee correctness for a larger interval of the ratio ε
R compared to88

previous literature, most existing work addresses non-uniform sampling cases, whereas our89

work focuses on uniform sampling.90

The vertical convexity assumption, crucial for the correctness of our algorithms, has been91

employed in various forms to establish collapsibility of certain classes of simplicial complexes92

SoCG 2025



XX:4 When Alpha-Complexes Collapse Onto Codimension-1 Submanifolds

[1,10,20]. Similarly, bounding the angle between the manifold and the simplices used for93

reconstruction has been essential in prior work [6,9,21–23]. Our bound (1) remains true when94

replacing R with the local feature size of a, as explained in [7, App. A]. The thus modified95

bound improves upon the known bound [23, Lemma 3.5].96

At last, for d = 3, we show in the full version [7] that the restricted Delaunay complex is97

generically homeomorphic toM for ε
R ≤ 0.225. In contrast, it is proven to be homeomorphic98

toM only if ε
R ≤ 0.09 [22, Theorem 13.16], a result based on the Topological Ball Theorem [22,99

Theorem 13.1]. Our proof bypasses this requirement, relying instead on NaiveSquash.100

Outline. After the preliminaries in Section 2, Section 3 defines vertically convex simplicial101

complexes. We introduce the concepts of upper and lower skins for these complexes and102

prove that both are homeomorphic to their orthogonal projection ontoM. Section 4 presents103

general conditions under which a simplicial complexK can be transformed into a triangulation104

ofM through either Naive or Practical vertical simplification. Section 5 provides conditions105

ensuring the topological correctness of both the naive and practical Squash algorithms and106

the restricted Delaunay complex. All missing proofs can be found in the full version [7].107

2 Preliminaries108

Subsets and submanifold.109

Given a subset X ⊆ Rd, we define several important geometric concepts. The convex hull of110

X is denoted as conv(X) and the affine space spanned by X as Aff(X). The interior of X is111

denoted as X◦. The relative interior of X, denoted as relint(X), represents the interior of112

X within Aff(X). For any point x and radius r, we denote the closed ball with center x and113

radius r as B(x, r). The r-offset of X, denoted as X⊕r, is the union of closed balls centered114

at each point in X with radius r: X⊕r =
⋃
x∈X B(x, r). The medial axis of X, denoted as115

axis(X), is the set of points in Rd that have at least two nearest points in X. The reach of116

X, denoted as Reach(X), is the infimum of distances between X and axis(X). Furthermore,117

we define the projection map πX : Rd \ axis(X)→ X, which associates each point x with its118

unique closest point in X. This projection map is well-defined on every subset of Rd that119

does not intersect axis(X), particularly on every r-offset of X with r < Reach(X).120

Throughout the paper, we designate M as a compact C2 submanifold of Rd of
codimension one, and, therefore, orientable (see e.g. [42]).

121

122

Given m ∈ M, we denote the affine tangent space toM at m as TmM and the affine123

normal space as NmM. As M has codimension one, TmM is a hyperplane and NmM124

is a line. Additionally, sinceM is C2, it has a positive reach [43]. For all real numbers r125

such that 0 < r < Reach(M), the r-offset ofM can be partitioned into the set of normal126

segments {NmM∩B(m, r)}m∈M [26], that is,127

M⊕r =
⋃̇

m∈M
NmM∩B(m, r).128

We define n :M→ Rd as a differentiable field of unit normal vectors ofM [26]. We
let R be a finite arbitrary number such that 0 < R ≤ Reach(M), fixed throughout.

129

130
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Abstract simplicial complexes and collapses.131

We recall some classical definitions of algebraic topology [29,39]. An abstract simplicial132

complex is a collection K of finite non-empty sets with the property that if σ belongs to K,133

so does every non-empty subset of σ. Each element σ of K is called an abstract simplex and134

its dimension is one less than its cardinality: dim σ = cardσ − 1. A simplex of dimension i135

is called an i-simplex and the set of i-simplices of K is denoted as K [i]. If τ and σ are two136

simplices such that τ ⊆ σ, then τ is called a face of σ, and σ is called a coface of τ . The137

(d− 1)-dimensional faces of σ are the facets of σ. The vertex set of K is VertK =
⋃
σ∈K σ.138

A subcomplex L of K is a simplicial complex whose elements belong to K. The link of σ in139

K, denoted Lk(σ,K), is the set of simplices τ in K such that τ ∪ σ ∈ K and τ ∩ σ = ∅. It is140

a subcomplex of K. The star of σ in K, denoted as St(σ,K), is the set of cofaces of σ. The141

simplicial complex formed by all the faces of σ is the closure of σ, Cl σ.142

Consider next an abstract simplex σ ⊆ Rd. One can associate it to the geometric simplex143

conv(σ) ⊆ Rd, called the support of σ. In general, dim(Aff(σ)) ≤ dim(σ) and we say that σ is144

non-degenerate whenever dim(Aff(σ)) = dim σ. Given a simplicial complex K with vertices145

in Rd, we say that K is canonically embedded if the following two conditions are satisfied:146

1. dim σ = dim(Aff(σ)) for all σ ∈ K;147

2. conv(α ∩ β) = conv(α) ∩ conv(β) for all α, β ∈ K.148

In this paper we consider exclusively abstract simplicial complexes K with vertex sets
in Rd and which are canonically embedded.

149

150

Given such a simplicial complex, its underlying space (or support) is the point set152

|K| =
⋃
σ∈K conv(σ). If |K| is homeomorphic toM, then K is called a triangulation ofM153

or is said to triangulateM. Since K is canonically embedded, the link of every i-simplex154

of K falls into one of the following two categories: (1) it is a triangulation of the sphere of155

dimension d− i− 1 or (2) it is a proper1 subcomplex of such a triangulation. The boundary156

complex of a simplicial complex K is the subset of simplices in the second category, denoted157

∂K, and it holds that |∂K| = ∂|K|. Simplices in ∂K are referred to as boundary simplices158

of K. Given a set of abstract simplices Σ, if σ ∈ Σ has no coface in Σ besides itself, then σ159

is said to be inclusion-maximal in Σ.160

Suppose that τ ∈ K is a simplex whose star in K has a unique inclusion-maximal element161

σ 6= τ . Then τ is said to be free in K. Equivalently, τ is free in K if and only if the link of162

τ in K is the closure of a simplex. Consequently, free simplices of K are always boundary163

simplices of K. However, not all boundary simplices of K are necessary free. There are164

instances where none of them are free, such as the famous example when K triangulates the165

2-dimensional subspace of R3, known as the “house with two rooms”. A collapse in K is the166

operation that removes from K a free simplex τ along with all its cofaces. This operation is167

known to preserve the homotopy-type of |K|.168

Delaunay complexes, α-complexes, and α-shapes.169

Consider a finite collection of points P ⊆ Rd. The Voronoi region of q ∈ P is the collection170

of points x ∈ Rd that are closer to q than to any other points of P :171

V (q, P ) = {x ∈ Rd | ‖x− q‖ ≤ ‖x− p‖, for all p ∈ P}.172

1 A proper subset A of B is such that A 6= B.151

SoCG 2025
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Given a subset σ ⊆ P , let V (σ, P ) =
⋂
q∈σ V (q, P ). The Delaunay complex is defined as173

Del(P ) = {σ ⊆ P | σ 6= ∅ and V (σ, P ) 6= ∅}.174

A simplex σ ∈ Del(P ) is called a Delaunay simplex of P and it is dual to its corresponding175

Voronoi cell V (σ, P ). Henceforth, we assume that the set of points P is in general position.176

This means that no d + 2 points of P lie on the same d-dimensional sphere and no k + 2177

points of P lie on the same k-dimensional flat for k < d. In that case, Del(P ) is canonically178

embedded [33]. For α ≥ 0, the α-complex of P is the subcomplex of Del(P ) defined by:179

Del(P, α) = {σ ⊆ P | σ 6= ∅ and V (σ, P ) ∩ P⊕α 6= ∅}.180

Its underlying space | Del(P, α)| =
⋃
σ∈Del(P,α) conv(σ) is called the α-shape of P . It has the181

properties: (i) | Del(P, α)| ⊆ P⊕α and (ii) | Del(P, α)| is homotopy equivalent to P⊕α; see182

[28] for more details.183

Figure 2 Left: P is such that neither P⊕α nor Del(P, α) are vertically convex relative to a
horizontal line. Right: Decomposition of P⊕α \ | Del(P, α)|◦ in joins as described in [28].

184

185

3 Vertically convex simplicial complexes186

In this section, we define the concept of vertical convexity relative toM for both a set and a187

simplicial complex. We then study the boundary of a vertically convex simplicial complex K.188

Specifically, we divide the boundary of its underlying space into an upper and a lower skins,189

enabling us to identify two boundary subcomplexes: an upper and a lower ones. Furthermore,190

we show that each of these subcomplexes triangulates the orthogonal projection of |K| onto191

M (Lemma 6). We also extend the definitions for a single d-simplex.192

I Definition 1 (Vertical convexity). A set X ⊆ Rd is vertically convex relative to M if193

∃ r ∈ [0,Reach(M)) such that194

1. X ⊆M⊕r and195

2. ∀m ∈M, NmM∩B(m, r) ∩X is convex.196

In other words, for any m ∈ M, the set NmM∩ B(m, r) ∩ X is either empty or a line197

segment (possibly of zero-length). A simplicial complex K is vertically convex relative toM198

if its underlying space |K| is.199

Examples of a non-vertically convex and a vertically convex simplicial complexes are204

provided in Figures 2 and 3, respectively.205
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M

K

M⊕r

n(m)

m

UpperSkinM(K)

LowerSkinM(K)

Figure 3 A simplicial complex K vertically convex relative to the curve M. Each segment
NmM∩B(m, r) (in dashed orange) intersects |K| in a line segment, as highlighted (blue) for the
point m (represented by a black square). Lemma 4 shows that each of the two skins of |K|, depicted
in green and pink according to the labeling arrows, is homeomorphic toM.

200

201

202

203

3.1 Upper and lower skins206

Assume that X ⊆ Rd is vertically convex relative toM and let m ∈ πM(X). The endpoints207

(possibly equal) of the segment NmM∩B(m, r) ∩X are denoted by lowX(m) and upX(m),208

with upX(m) being above lowX(m) along the direction of the unit normal vector n(m). With209

this notation, X can be expressed as a union of disjoint normal segments:210

X =
⋃̇

m∈πM(X)
[lowX(m),upX(m)].211

The upper skin and lower skin of X are, respectively:212

UpperSkinM(X) = {upX(m) | m ∈ πM(X)},213

LowerSkinM(X) = {lowX(m) | m ∈ πM(X)}.214

Figure 3 displays an example. Our goal is to study the skins of |K|, for which we need two215

extra definitions.216

I Definition 2 (Vertical simplex). A simplex σ ⊆ Rd such that conv(σ) ⊆ Rd \ axis(M) is217

vertical relative to M if there exists a pair of distinct points in conv(σ) sharing the same218

projection ontoM.219

I Definition 3 (Non-vertical skeleton). Assume that |K| ⊆ Rd \ axis(M). We say that K has220

a non-vertical skeleton relative toM if K contains no vertical i-simplices relative toM for221

all integers 0 < i < d.222

The next lemma is a key property of vertically convex simplicial complexes:223

I Lemma 4. Suppose that K is vertically convex and has a non-vertical skeleton relative to224

M. Then, the upper and lower skins of |K| are closed sets, each homeomorphic to πM(|K|).225

The homeomorphism is realized in both cases by πM. In addition,226

∂|K| = UpperSkinM(|K|) ∪ LowerSkinM(|K|). (2)227

SoCG 2025
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A simple consequence follows:228

I Lemma 5. Let K be vertically convex and with non-vertical skeleton relative to M. If229

UpperSkinM(|K|) = LowerSkinM(|K|), then K = ∂K.230

Aiming for a simplicial version of Equation (2), we define the upper complex of K and231

the lower complex of K relative toM as follows:232

UpperComplexM(K) = {ν ⊆ ∂K | conv(ν) ⊆ UpperSkinM(|K|)},233

LowerComplexM(K) = {ν ⊆ ∂K | conv(ν) ⊆ LowerSkinM(|K|)}.234

By construction, both are subcomplexes of ∂K. A combinatorial equivalent of Lemma 4 is:235

I Lemma 6. Let K be vertically convex with non-vertical skeleton relative toM. Then,236

| UpperComplexM(K)| = UpperSkinM(|K|),237

| LowerComplexM(K)| = LowerSkinM(|K|) and238

∂K = UpperComplexM(K) ∪ LowerComplexM(K).239

Moreover, if πM(|K|) =M, both UpperComplexM(K) and LowerComplexM(K) are trian-240

gulations ofM.241

3.2 Upper and lower facets of a d-simplex242

Let σ be a non-degenerate d-simplex of Rd such that conv(σ) ⊆M⊕r for some r < Reach(M).243

In that case, Cl σ is embedded and vertically convex relative toM. The facets of σ can be244

partitioned into upper facets and lower facets of σ relative toM as follows:245

UpperFacetsM(σ) = {ν facet of σ | ν ∈ UpperComplexM(Cl σ)}246

LowerFacetsM(σ) = {ν facet of σ | ν ∈ LowerComplexM(Cl σ)}.247

An example can be seen in Figure 4, where one can also observe the following property:248

M m

σ

n(m)

M⊕r

Figure 4 Upper (smooth green edges) and lower (dotted pink edge) facets of a 2-simplex σ ⊆ R2.249

I Lemma 7. Consider a non-degenerate d-simplex σ ⊆ Rd such that conv(σ) ⊆ M⊕r for250

some r < Reach(M). If σ has no vertical facets relative toM, then UpperFacetsM(σ) and251

LowerFacetsM(σ) are non-empty sets that partition the facets of σ.252
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4 Vertically collapsing simplicial complexes253

In this section, assuming that |K| ⊆ M⊕r for some r < Reach(M), we introduce an254

algorithm for simplifying K using vertical collapses relative toM (Section 4.1) and establish255

conditions for when it outputs a triangulation ofM (Section 4.2). We first present a naive256

version that requires the knowledge ofM and then present a practical version (Section 4.3).257

4.1 Naive algorithm258

I Definition 8 (Vertically free simplices). A simplex τ is said to be free from above (resp.,259

free from below) in K relative toM if260

τ is a free simplex of K;261

the unique inclusion-maximal simplex σ in St(τ,K) has dimension d;262

the set of (d− 1)-simplices in St(τ,K) is exactly the set of upper (resp., lower) facets of263

σ relative toM.264

We say that τ is vertically free in K relative to M if τ is either free from above or from265

below in K relative toM. See Figures 5 and 7 for a depiction.266

I Remark 9. Definition 8 can be naturally extended to non-compact submanifoldsM. In267

particular, it holds for hyperplanes, a fact that we use in Algorithm 2.268

I Definition 10 (Vertical collapse). A vertical collapse of K relative toM is the operation269

of removing the star of a simplex τ ∈ K that is vertically free relative toM.270

Collapsing τ

σ
τ

K

M

K

M

n(m) n(m)

collapsing τ

σ

τ

K

M

n(m)

K

M

n(m)

Vertically

M⊕r M⊕r

M⊕rM⊕r

Figure 5 Schematic drawings of K in blue (smooth filled areas). Top row: the edge τ is free
but not vertically free relative toM and collapsing τ does not preserve the vertical convexity of
K. Bottom row: the vertex τ is free from above relative toM, so that collapsing τ preserves the
vertical convexity of K (Lemma 14). The (d− 1)-simplices of K that disappear with τ are precisely
the upper facets of σ (smooth edges, in green).

271

272

273

274

275
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A vertical collapse of K can be seen as compressing the underlying space of K by shifting276

its upper or lower skin along directions normal to M; see Figure 5. Our first algorithm,277

outlined in Algorithm 1, simplifies K by iteratively applying vertical collapses relative toM.278

It is worth noting that the algorithm operates on any simplicial complex K with |K| ⊆M⊕r279

for r < Reach(M), irrespective of whether K is vertically convex relative toM or not.280

Algorithm 1 NaiveVerticalSimplification(K)281

while there is a simplex τ vertically free in K relative toM do282

Collapse τ in K;283

end while284

4.2 Correctness285

We now establish conditions under which NaiveVerticalSimplification(K) transforms286

K into a triangulation ofM. For that, we introduce a binary relation over d-simplices:287

I Definition 11 (Below relation ≺M). Let σ0, σ1 ⊆ Rd be two d-simplices sharing a common288

facet ν = σ0 ∩ σ1 and let conv(σ0)∪ conv(σ1) ⊆M⊕r for some r < Reach(M). We say that289

σ0 is below σ1 (or that σ1 is above σ0) relative toM, denoted σ0 ≺M σ1, if ν is an upper290

facet of σ0 and a lower facet of σ1 relative toM.291

Note that the relation ≺M is not acyclic in general, see Figure 6.292

M

n(m)

m

K

Figure 6 Non-Delaunay triangles that form a cycle in the ≺M relation and their dual graph.293

I Theorem 12 (Correctness). Consider K such that |K| ⊆ M⊕r for some r < Reach(M)294

and assume the following:295

Injective projection: K has a non-vertical skeleton relative toM.296

Covering projection: πM(|K|) =M.297

Vertical convexity: K is vertically convex relative toM.298

Acyclicity: ≺M is acyclic over d-simplices of K.299

Then, NaiveVerticalSimplification(K) transforms K into a triangulation ofM.300

The remaining of this section aims to prove Theorem 12 and we consider K such that301

|K| ⊆M⊕r for some r < Reach(M). Using the relation ≺M, associate to K its dual graph302
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GM(K) that has one node for each d-simplex of K and one arc for each pair of d-simplices303

σ0, σ1 ∈ K that share a common facet σ0 ∩ σ1. Direct an arc from σ0 to σ1 if σ0 ≺M σ1,304

and from σ1 to σ0 otherwise. Since either σ0 ≺M σ1 or σ1 ≺M σ0, this yields a well-defined305

orientation for each arc in the dual graph. Figures 6 and 7 show examples.306

M

M⊕r

K

m

n(m)

Figure 7 A vertically convex simplicial complexK relative toM. All free simplices are highlighted
by thickness. There are four simplices free from below (represented by three dotted edges and
one triangular vertex, in pink) and four simplices free from above (represented by two dashed
edges and two square vertices, in green). The dual graph (oriented edges, in blue) has four sources
(vertices filled by dots, in pink) and four sinks (vertices with a smooth filling, in green), in one-to-one
correspondence with the free simplices from below and above.

307

308

309

310

311

312

In a directed graph, a source is a node with only outgoing arcs, while a sink is a node313

with only incoming arcs. The next lemma states that a vertical collapse in K corresponds to314

the removal of either a sink or a source in GM(K) and conversely. For that, given a finite315

set of abstract simplices Σ = {σ1, σ2, . . . , σk}, let
⋂

Σ =
⋂k
i=1 σi denote the set of vertices316

that belong to all simplices in Σ. If
⋂

Σ 6= ∅, it forms an abstract simplex.317

I Lemma 13 (Sinks and sources). Consider K such that |K| ⊆M⊕r for some r < Reach(M)318

and assume that K satisfies the injective projection, covering projection and vertical convexity319

assumptions of Theorem 12. Consider a d-simplex σ ∈ K and let τ =
⋂

UpperFacetsM(σ)320

and τ ′ =
⋂

LowerFacetsM(σ). Then,321

τ is a free simplex of K from above relative toM ⇐⇒ σ is a sink of GM(K).322

τ ′ is a free simplex of K from below relative toM ⇐⇒ σ is a source of GM(K).323

The next lemma provides an invariant for the while-loop of Algorithm 1.324

I Lemma 14 (Loop invariant). Consider K such that |K| ⊆M⊕r for some r < Reach(M).325

Let τ be a vertically free simplex in K relative toM. Let K ′ be obtained from K by collapsing326

τ in K. If K satisfies the assumptions of Theorem 12, then so does K ′.327

I Lemma 15 (Upon termination). Consider K such that |K| ⊆M⊕r for some r < Reach(M)328

and assume that K satisfies the injective projection and vertical convexity assumptions of329

Theorem 12. If GM(K) = ∅, then LowerSkinM(|K|) = UpperSkinM(|K|).330
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Proof. We establish the contrapositive:331

LowerSkinM(|K|) 6= UpperSkinM(|K|) =⇒ GM(K) 6= ∅332

Suppose that the two skins are distinct, in other words, that there exists m ∈M such that333

low|K|(m) 6= up|K|(m) and let us show that the segment [low|K|(m),upK(m)] intersects the334

support of at least one d-simplex of K, implying GM(K) 6= ∅. Suppose, for a contradiction,335

that [low|K|(m),up|K|(m)] only intersects the support of i-simplices of K for i < d. As336

low|K|(m) 6= up|K|(m) and K has a finite number of simplices, at least one of these i-337

simplices, say ν, intersects [low|K|(m),up|K|(m)] in a non-zero length segment containing338

distinct points x, y ∈ conv(ν) ∩ [low|K|(m),up|K|(m)]. Hence, x and y share the same339

orthogonal projection m ontoM, implying that ν is vertical relative toM. This contradicts340

the injective projection assumption on K and therefore establishes the contrapositive. J341

We now prove the correctness of NaiveVerticalSimplification(K).342

Proof of Theorem 12. The algorithm starts with K that satisfies the theorem assumptions.343

By Lemma 14, after each iteration of the while-loop we obtain a new K that continues to344

satisfy those assumptions. Since each iteration involves a vertical collapse of K relative345

to M, the number of d-simplices of K is reduced. Thus, the algorithm must terminate.346

Upon termination, there are no vertically free simplices in K relative toM. By Lemma 13,347

this implies that, when Algorithm 1 terminates, GM(K) has no terminal node (neither a348

source nor a sink) and is therefore empty. By Lemma 15, it follows that LowerSkinM(|K|) =349

UpperSkinM(|K|). By Lemma 5, we have K = ∂K and Lemma 6 implies350

K = ∂K = UpperComplexM(K) = LowerComplexM(K),351

with K being a triangulation ofM. J352

4.3 Practical version353

Algorithm 1 relies on knowledge ofM, which renders it impractical for implementation since354

M is typically unknown. In this section, we introduce Algorithm 2, a feasible variant that is355

correct if the (d− 1)-simplices of K form a sufficiently small angle withM; see [7, App. A]356

for a definition of the angle between affine spaces. In this variant, we assign an affine space357

Hτ to each τ ∈ K: for a free simplex τ with a d-dimensional coface σ, Hτ is defined as the358

hyperplane spanned by any facet of σ. Otherwise, set Hτ = ∅. We also use the notion of359

vertically free simplices relative to Hτ , extending Definition 8 as indicated in Remark 9.360

Algorithm 2 PracticalVerticalSimplification(K)361

while there is a simplex τ vertically free in K relative to Hτ do362

Collapse τ in K;363

end while364

I Theorem 16 (Correctness). Suppose that K satisfies the assumptions of Theorem 12 and,365

in addition, for all (d− 1)-simplices ν of K366

max
a∈ν

∠(Aff(ν),TπM(a)M) < π

4 . (3)367

Then, PracticalVerticalSimplification(K) transforms K into a triangulation ofM.368
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5 Correct reconstructions from α-complexes369

In this section, we assume thatM is sampled by a finite point set P and consider Algorithms 3370

and 4, which apply vertical collapses to Del(P, α) either straightforwardly or practically. We371

introduce two parameters, ε ≥ 0 and δ ≥ 0, to control the sample density and noise of P ,372

respectively, and a scale parameter α ≥ 0. Section 5.1 establishes conditions ensuring the373

correctness of Algorithms 3 and 4, with the proof outlined in Section 5.2. Section 5.3 shows374

how these conditions hold for a wide range of ε
R and α

R whenM is a surface in R3 and P is375

noiseless. This result is extended to the restricted Delaunay complex of P in Section 5.4.376

Algorithm 3 NaiveSquash(P, α)377

K ← Del(P, α); NaiveVerticalSimplification(K); return K;378

Algorithm 4 PracticalSquash(P, α)379

K ← Del(P, α); PracticalVerticalSimplification(K); return K;380

5.1 Sampling and angular conditions in Rd
381

The next definition enables us to express our results in Rd more concisely.382

I Definition 17 (Strict homotopy condition). We say that ε, δ ≥ 0 satisfy the strict homotopy383

condition if (R− δ)2 − ε2 > (4
√

2− 5)R2 for δ ≤ ε and ε+
√

2δ < (
√

2− 1)R for δ ≥ ε.384

Let I(ε, δ) be an interval of α values so that P⊕α is vertically convex with relation toM.385

The exact definition can be found in [7, App. D.1]. The fact that this interval guarantees386

vertical convexity follows from the specialization of Propositions 5 and 7 in [8] to the case387

whereM has codimension-one:388

I Theorem 18 (Specialization of [8]). Suppose thatM⊆ P⊕ε and P ⊆M⊕δ with ε, δ ≥ 0389

that satisfy the strict homotopy condition. Then, for all α ∈ I(ε, δ), πM(P⊕α) = M and390

P⊕α is vertically convex relative toM. Thus, P⊕α has associated upper and lower skins and391

deformation-retracts ontoM along πM. In addition, the two skins partition ∂P⊕α.392

The above concepts can be put together to state our main theorem:393

I Theorem 19. AssumeM⊆ P⊕ε and P ⊆M⊕δ for ε, δ ≥ 0 that satisfy the strict homotopy394

condition. Let α ∈
[
δ, 2(R−δ)

3

)
∩ I(ε, δ) and β > 0 such thatM⊕β ⊆ P⊕α. Suppose that for395

all i-simplices τ ∈ Del(P, α), 0 < i < d and all (d− 1)-simplices ν ∈ Del(P, α) it holds:396

max
x∈conv(τ)

∠(Aff(τ),TπM(x)M) < π

2 , (4)397

min
a∈τ

∠(Aff(τ),TπM(a)M) < arcsin
(

(R+ β)2 − (R+ δ)2 − α2

2(R+ δ)α

)
and (5)398

min
x∈conv(ν)

∠(Aff(ν),TπM(x)M) < π

2 − 2 arcsin
(

α

2(R− δ − α)

)
. (6)399

Then, Del(P, α) satisfies the injective projection, covering projection, vertical convexity and400

acyclicity assumptions of Theorem 12. Furthermore, both the upper and lower complexes of401

Del(P, α) relative toM are triangulations ofM and NaiveSquash(P, α) returns a triangu-402

lation ofM.403
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One can check that Conditions (4), (5) and (6) are well-defined; see Remark E1 in [7].404

I Corollary 20. Suppose the assumptions of Theorem 19 are satisfied and furthermore that405

for all (d− 1)-simplices ν ∈ Del(P, α),406

max
a∈ν

∠(Aff(ν),TπM(a)M) < π

4 . (7)407

Then, PracticalSquash(P, α) returns a triangulation ofM.408

5.2 Partial proof technique for Theorem 19409

In this section, we establish the covering projection and vertical convexity of Del(P, α), as410

guaranteed by Theorem 19. The complete proof of that theorem, which is unfortunately too411

lengthy to include here, can be found in [7, App. E].412

I Lemma 21. AssumeM⊆ P⊕ε and P ⊆M⊕δ for ε, δ ≥ 0 that satisfy the strict homotopy413

condition. Let α ∈ [δ,R − δ) ∩ I(ε, δ) and β > 0 be such that M⊕β ⊆ P⊕α. Suppose414

that for all i-simplices τ ∈ Del(P, α) with 0 < i < d, Conditions (4) and (5) hold. Then,415

πM(| Del(P, α)|) =M and Del(P, α) is vertically convex relative toM.416

upper skin of P⊕α

lower skin of P⊕α

n(m)

m

P⊕α

Del(P, α)

M

a

b

F+
ab

F+
a

F+
b

c

d

F−c

F−dF−cd

Figure 8 Decomposing P⊕α \ | Del(P, α)|◦ into upper joins (hashed, in green) and lower joins
(dotted, in pink).

417

418

Upper and lower joins. For proving this lemma, we introduce upper and lower joins.419

ConsiderM, P , ε, δ, α and β that satisfy the assumptions of Lemma 21 and notice that they420

also meet the conditions of Theorem 18. Therefore, P⊕α has associated upper and lower421

skins and the two skins form a partition of ∂P⊕α. Using that partition, we decompose the set422

difference P⊕α\| Del(P, α)|◦ into upper and lower joins, slightly adapting what is done in [28];423

see Figures 2 and 8. For that, notice that ∂P⊕α can be decomposed into faces, each face424

being the restriction of ∂P⊕α to a Voronoi cell of P . There is a one-to-one correspondence425

between simplices of ∂Del(P, α) and faces of ∂P⊕α: the simplex τ ∈ ∂Del(P, α) corresponds426

to the face Fτ = V (τ, P ) ∩ ∂P⊕α and conversely. We can further partition each face Fτ of427
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∂P⊕α into a portion F+
τ that lies on the upper skin of ∂P⊕α and a portion F−τ that lies on428

the lower skin of ∂P⊕α. Note that F+
τ or F−τ can be empty. We refer to F+

τ as an upper429

face and F−τ as a lower face. The set of upper faces decompose the upper skin, while the430

set of lower faces decompose the lower skin. A join X ∗ Y is defined as the set of segments431

[x, y] where x ∈ X and y ∈ Y [28]. We call F+
τ ∗ conv(τ) an upper join and F−τ ∗ conv(τ) a432

lower join. The next lemma, proved in [7, App. E.2], identifies points in ∂|Del(P, α)| that433

are connected to upper or lower joins.434

I Remark 22. The collection of upper and lower joins cover the set P⊕α \ | Del(P, α)|◦.435

I Remark 23. If an upper join and a lower join have a non-empty intersection, the common436

intersection belongs to | Del(P, α)|.437

I Lemma 24. Under the assumptions of Lemma 21, let γ ∈ Del(P, α) and x ∈ relint(conv(γ)).438

If for some λ > 0 (resp. λ < 0), the segment (x, x + λn(πM(x))] lies outside | Del(P, α)|,439

then it intersects an upper (resp. lower join).440

Proof of Lemma 21. ConsiderM, P , ε, δ, α and β that satisfy the assumptions of Lemma 21.441

As noted before, they also meet the conditions of Theorem 18. Therefore, πM(P⊕α) =M442

and P⊕α is vertically convex relative toM. Hence, there exists r < Reach(M) such that443

P⊕α ⊆ M⊕r and P⊕α ∩NmM∩ B(m, r) is a line segment for any m ∈ M. Fix m ∈ M444

arbitrarily. We show that | Del(P, α)| ∩NmM∩B(m, r) is also a line segment.445

First, we show by contradiction that it is non-empty. Let u+ (resp. u−) be the endpoint446

of the segment P⊕α ∩NmM∩B(m, r) that lies on the upper (resp. lower) skin of P⊕α and447

hence is contained in an upper (resp. lower) join. By Remark 22, the entire segment [u+, u−]448

is covered by upper and lower joins. Thus, at some point c of [u+, u−], an upper join and a449

lower join intersect. By Remark 23, such an intersection places c on | Del(P, α)| as well.450

Second, we show by contradiction that | Del(P, α)| ∩ NmM ∩ B(m, r) is connected.454

Suppose that a, b ∈ | Del(P, α)| ∩NmM∩B(m, r) are such that [a, b] ∩ | Del(P, α)| = {a, b}455

with a being above b along the direction of n(m). Since a, b ∈ | Del(P, α)| ⊆ P⊕α and P⊕α is456

vertically convex, the segment [a, b] is contained in P⊕α. By Remark 22, the entire segment457

[a, b] is covered by upper and lower joins. Let γa and γb be the simplices of Del(P, α) that458

contain a and b, respectively, in their relative interior. Letting λ = ‖a−b‖
2 , then both segments459

(a, a− λn(m)] and (b, b+ λn(m)] lie outside | Del(P, α)|. It follows, by Lemma 24, that there460

are at least one lower and one upper joins among the joins that cover (a, b); see Figure 9.461

Hence, an upper and a lower joins intersect at a point c of the segment (a, b). By Remark 23,462

c lies in | Del(P, α)|, a contradiction. Therefore, for all m ∈M, | Del(P, α)|∩NmM∩B(m, r)463

is non-empty and connected, thus forming a line segment. J464

5.3 Sampling conditions for surfaces in R3.465

Theorem 19 requires that the i-simplices of Del(P, α) form a small angle with the manifold466

M, for 0 < i < d. Ensuring this can be challenging in practice, especially for i ≥ 3. However,467

in the specific case of noiseless edges (i = 1) or triangles (i = 2), it is possible to upper bound468

the angle these simplices form withM. For edges, it is known that:469

I Lemma 25 ([15, Lemma 7.8]). If ab is a non-degenerate edge with a, b ∈M, then470

sin∠Aff(ab),TaM ≤ ‖b− a‖2R .471

For triangles, let ρ(τ) be the radius of the smallest (d− 1)-sphere circumscribing τ . We472

establish a simple bound that is tighter than the previous one (see [23, Lemma 3.5]):473
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NmM

m

b

a

P⊕α

n(m)

upper skin of P⊕α

lower skin of P⊕α

r

TmM

Figure 9 Reaching a contradiction in the proof of Lemma 21. We see the simplices of Del(P, α)
whose support intersects NmM∩B(m, r) (smooth filling, in pale blue) and one upper (hashed, in
green) and one lower (dotted, in pink) joins that intersect [a, b].

451

452

453

I Lemma 26. If abc is a non-degenerate triangle with longest edge bc, for a, b, c ∈M, then474

sin∠Aff(abc),TaM ≤ ρ(abc)
R

if abc is an obtuse triangle and475

sin∠Aff(abc),TaM ≤
√

3 ρ(abc)
R

if abc is an acute triangle.476

If abc is obtuse, the bound is tight and happens whenM is a sphere of radius R.477

The proof is technical and is therefore provided in [7, App. A]. For the same reason, the478

proof of the following result, where we use the bounds for edges and triangles to establish479

sampling conditions for surfaces in R3, is in [7, App. F]. Let us define480

βε,α = − ε2

2R +
√
α2 + ε4

4R2 − ε
2,481

which is one particular value of β that guaranteesM⊕β ⊆ P⊕α; see [7, App. D.2].482

I Theorem 27. Let M be a C2 surface in R3 whose reach is at least R > 0. Let P be a483

finite point set such that P ⊆M ⊆ P⊕ε.484

1. For all ε, α ≥ 0 that satisfy
√

3α
R < min

{
(R+βε,α)2−R2−α2

2Rα , cos
(
2 arcsin

(
α
R
))}

,485

the upper and lower complexes of Del(P, α) relative toM are triangulations ofM;486

NaiveSquash(P, α) returns a triangulation ofM.487

2. For all ε, α ≥ 0 that satisfy in addition
√

3α
R < sin

(
π
4 − 2 arcsin

(
α
R
))
,488

PracticalSquash(P, α) returns a triangulation ofM.489
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The pairs of ( εR ,
α
R ) that satisfy 1 and 2 are depicted in Figures 10a and 10b, respectively.490

I Remark 28. In particular, 1 holds for ε
R ≤ 0.225 and α

R = 0.359; and 2 for ε
R ≤ 0.178 and491

α
R = 0.207, better bounds than the previous existing ones [22, Theorem 13.16][24].492

(a)
ε/R

α/R

0.225

0.359

0.396

(b)
ε/R

α/R
0.207

0.178

Figure 10 Pairs of ( εR ,
α
R ) for which NaiveSquash(P, α) (a) and PracticalSquash(P, α) (b) are

correct, for P ⊆M ⊆ P⊕ε and d = 3.
493

494

5.4 The restricted Delaunay complex495

We recall from [32] that the restricted Delaunay complex is496

DelM(P ) = {σ ⊆ P | σ 6= ∅ and V (σ, P ) ∩M 6= ∅}.497

I Theorem 29. LetM be a C2 surface in R3 whose reach is at least R > 0. Let P be a finite498

set such that P ⊆M ⊆ P⊕ε for 0 ≤ ε
R ≤ 0.225. Under the additional generic assumption499

that all Voronoi cells of P intersectM transversally, DelM(P ) is a triangulation ofM.500
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