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Abstract

In this paper, we study the shape reconstruction problem, when the shape we
wish to reconstruct is an orientable smooth d-dimensional submanifold of the
Euclidean space. Assuming we have as input a simplicial complex K that approx-
imates the submanifold (such as the Čech complex or the Rips complex), we
recast the problem of reconstucting the submanifold from K as an `1-norm min-
imization problem in which the optimization variable is a d-chain of K over the
field R. Providing that K satisfies certain reasonable conditions, we prove that
the considered minimization problem has a unique solution which triangulates
the submanifold and coincides with the flat Delaunay complex introduced and
studied in a companion paper [1]. Since the objective is a weighted `1-norm and
the constraints are linear, the triangulation process can thus be implemented by
linear programming.

Keywords: manifold reconstruction, Delaunay complex, triangulation, simplicial
complex, `1-norm minimization, chain
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1 Introduction

In many practical situations, the shape of interest is only known through a finite set
of sample points. Given as input these points, a natural question is how to construct
a triangulation of the shape, that is, a set of simplices whose union is homeomorphic
to the shape. This problem, known as shape reconstruction, has been widely studied
[2–9]. In the paper, the shape is assumed to be a smooth orientable d-dimensional
submanifold of the Euclidean space. We show that, under appropriate conditions,
a triangulation of that submanifold can be expressed as the solution of a weighted
`1-norm minimization problem under linear constraints.

Overview of the method in the particular case of planar curves.

We first give an informal description of our variational formulation in the easy case of
the triangulation of a closed, connected smooth curve in the plane. Assume that we
are given a set of points P that sample an unknown curve C (example in Figure 1a).
Consider the graph K whose vertices are the points of P and whose edges connect
pair of points that are within a certain given distance; see Figure 1b. Our goal is to
compute a triangulation of the curve C (i.e. a closed polygonal line) whose vertices
and edges are in K and which follows “nicely” C.

Let us orient (arbitrarily) edges in K; see Figure 1b. A 1-chain γ on K with real
coefficients is the assignation of a real number γ(e) to each oriented edge e in K. A
1-cycle is a 1-chain γ such that ∂γ = 0, which means that, at each vertex v of K, the
sum of the coefficients of the edges entering v equals the sum of coefficients of edges
leaving v; see Figure 1d.

We now define informally what we mean by a normalized 1-cycle. Consider a
tubular neighborhood of C sufficiently small, so that its complement consists only
of two connected components, one bounded component called the inside region and
one unbounded component called the outside region. Suppose furthermore that K is
contained in this small tubular neighborhood; see Figure 1c. The segment [a, b] shown
on Figure 1c has one endpoint a in the outside region, one endpoint b in the inside
region and it cuts both the curve C and the graph K transversally. Let us say that
an oriented edge [p, q] of K intersects [a, b] in a forward direction (resp. backward
direction) if a lies on the left (resp. on the right) of the directed line through p and q.
Given a 1-chain γ, we then define the flux through [a, b] of γ as

flux[a,b](γ) =
∑
e+

γ(e+)−
∑
e−

γ(e−),

where the first sum is over all edges e+ of K that cross [a, b] in a forward direction
and the second sum is over all edges e− of K that cross [a, b] in a backward direction.
For example, the flux of γ through [a, b] is 2 on Figure 1d. Note that the flux through
[a, b] is a linear form on the vector space of 1-cycles. Moreover, the flux of a 1-cycle γ
through [a, b] does not depend upon the location of [a, b], as long as a remains in the
outside region and b remains in the inside region. Indeed, the expression of the flux
changes only when the edge [a, b] passes through a vertex of K, at which time one
can check that the value of the flux remains constant if γ is a 1-cycle. We say that a
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Fig. 1: (a) A finite set of (black) points P that sample a (blue) curve C. (b) The graph
K is a proximity graph constructed from P by connecting every pair of points that
are less than 2r apart. Each edge in K is arbitrarily oriented. (c) The segment [a, b]
intersects both C and K transversally with b in the inside region and a in the outside
region. (d) A 1-cycle of K whose flux through [a, b] equals 2.

1-cycle is normalized if its flux through [a, b] is equal to 1. Figure 2a depicts such a
normalized cycle.

Our reconstruction method consists in computing the minimal cycle among all
normalized cycles. By minimal cycle, we mean here a cycle that minimizes a weighted
`1-norm. Perhaps the most natural weighted `1-norm for geometric 1-cycles could be
the length:

length(γ) =
∑
e

length(e) |γ(e)|,

where the sum is over all edges e of K. The normalized cycle minimizing the length
is depicted in Figure 2b, where one can observe that it is indeed a triangulation of
the curve C. However, in order to minimize the length, the resulting minimal cycle
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Fig. 2: (a) A 1-cycle is said to be normalized if its flux through [a, b] is equal to 1. (b) A
normalized cycle that minimizes the length. (c) A normalized cycle that minimizes
the sum of the edge lengths squared. (d) A normalized cycle that minimizes the sum
of the edge lengths cubed, also called the Delaunay energy (up to a multiplicative
constant). Our reconstruction method returns the support of that cycle.

favors long edges and skips intermediate sample points whenever possible, so that
small features of the curve are ignored.

In contrast, thanks to Pythagorean Theorem, weighting edges by the square of the
length would make the minimum cycle follow intermediate points, as long as there
exist at those intermediate points an incoming edge and an outcoming edge forming
an angle larger than π

2 ; see Figure 2c.
Instead, we consider minimizing the Delaunay energy, which, in the particular case

of one dimensional simplices (i.e. edges), consists in weighting edges (up to a constant
factor) by the cube of the length:

Edel(γ) =
1

6

∑
e

length(e)3 |γ(e)|
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The cycle minimizing this Delaunay energy is depicted on Figure 2d. One can again
check (and we shall actually prove in the paper) that this is indeed a triangulation
of C. Our method for reconstructing one dimensional curves can then be expressed as
solving the following optimization problem over 1-chains of K:

minimize
γ

Edel(γ)

subject to ∂γ = 0,

flux[a,b](γ) = 1

We aim at generalizing the above problem beyond dimension one manifolds and at
identifying sufficient conditions for the support of its solution to be a triangulation.
But for that we need first to make a detour to Delaunay complexes.

Variational formulation for Delaunay complexes.

The starting point of the work presented in this paper is the observation that when
we consider a point cloud P in Rd, its Delaunay complex can be expressed as the
solution of a particular `p-norm minimization problem. This fact is best explained by
lifting the point set P vertically onto the paraboloid P ⊆ Rd+1 whose equation is
xd+1 =

∑d
i=1 x

2
i . Denoting by P̂ the lifted points, it is well-known that the Delaunay

complex of P is isomorphic to the boundary complex of the lower convex hull of P̂ .
Starting from this equivalence, Chen has observed in [10] that the Delaunay com-

plex of P minimizes over all triangulations T of P the `p-norm of the difference between
the following two functions: the first function maps each point x to its vertical pro-
jection onto the lifted triangulation T̂ and the second function maps each point x to
the lifted point x̂ ∈ P. This variational formulation has been successfully exploited
in [11–13] for the generation of Optimal Delaunay Triangulations. When p = 1, the
`p-norm associated to T is what we call in this paper the Delaunay energy of T and,
can be interpreted as the (d + 1)-volume enclosed between the lifted triangulation
T̂ and the paraboloid P. Given a d-simplex σ, we call the (d + 1)-volume enclosed
between the convex hull of σ̂ and P the Delaunay weight of σ and denote it as ω(σ).
The Delaunay energy of T can then be simply expressed as the sum of the Delaunay
weights of its d-simplices.

Contributions.

We present a variational formulation to submanifold reconstruction in Euclidean space,
that both extends our variational approach for curve reconstruction in the plane and
the variational approach for generating Delaunay complexes in Rd. Consider a finite
set of points P that sample an unknown d-dimensional submanifold M ⊆ RN and
suppose that we have at hand a simplicial complex K whose vertex set is P (such as
for instance the Čech complex of P or the Vietoris-Rips complex of P ). Given as input
K, our goal is to find a triangulation of M contained in K.
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A crucial ingredient in our variational formulation is to embed the triangulations
contained in K inside the vector space formed by simplicial d-cycles1 of K over the
field R. In spirit, this is similar to what is done in the theory of minimal surfaces, when
oriented surfaces are identified to particular elements of a much larger set, namely the
space of currents [14], which enjoys the nice property of being a vector space. Our
method for reconstructing submanifolds consists in solving the following optimization
problem over d-chains of K:

minimize
γ

Edel(γ)

subject to ∂γ = 0,

loadA(γ) = 1

The objective function is the Delaunay energy, whose definition we adapt to the
d-chains γ of K by setting

Edel(γ) =
∑
σ

ω(σ) |γ(σ)|,

where the sum is over all d-simplices σ of K and ω(σ) is the Delaunay weight of σ.
The first constraint expresses the fact that we are searching for d-cycles. The second
constraint is a linear equation which may be interpreted as a kind of normalization
of γ that extends the condition flux[a,b](γ) = 1 beyond dimension one. The letter A
designates a set of parameters that specifies where the load is computed. Thus, our
optimization problem is an `1-norm minimization problem under linear constraints.
As such, it can be turned into a linear optimization problem in the standard form
through slack variables as explained in Appendix A, and can be addressed by standard
linear programming techniques such as the simplex algorithm.

One important point is that the objective function (i.e. the Delaunay energy) is
a weighted `1-norm. Put it simply, we are searching for weighted `1-minima. The
celebrated sparsity of `1-minima manifests itself in our context by the fact that the
support of such minima is sparse, in other words it is non-zero only on a small subset
of simplices of K. Our main result is a set of conditions under which our optimization
problem has a unique solution whose support is a triangulation of M (either with
theoretical or practical normalization).

Proof technique.

The proof requires us to introduce an elaborate construction, the Delloc complex of
P , as a tool to describe the solution. The d-simplices of that complex possess exactly
the property that we need for our analysis. In a companion paper [1] we show that
the Delloc complex indeed provides a triangulation of the manifold, assuming the set
of sample points P to be sufficiently dense, safe, and not too noisy. Incidently, the
Delloc complex coincides with the flat Delaunay complex introduced in our companion

1Or relative d-cycles when the considered domain has a boundary.
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paper [1] and is akin to the tangential Delaunay complex introduced and studied in
[15, 16]. When the manifold is sufficiently densely sampled by the data points, all three
constructions are locally isomorphic to a (weighted) Delaunay triangulation computed
in a local tangent space to the manifold. Intuitively, this indicates that the Delaunay
energy should locally reach a minimum for all three constructions and, therefore ought
to be also a global minimum. Actually, turning this intuitive reasoning into a correct
proof turns out to be more tricky than it appears and is the main purpose of the
present paper. In particular, we need to globally compare the Delaunay energy of the
cycle carrying the Delloc complex with that of alternate d-cycles, and this requires us
to carefully distribute the Delaunay energy along barycentric coordinates.

For the purpose of the proof, it is convenient to first consider a rather artificial
problem (Problem (?)) where, besides the sample P , the manifold M is known. At
the end of the paper, we show how to turn this problem into a more realistic one
(Problem (??)) that takes as input only the sample of the unknown manifold, and is
correct assuming that reasonable sampling conditions are met.

An overview of the proof is provided in Section 6.2.

Related work.

A closely related problem is the computation of `1-minimum homology representa-
tive cycles. Several authors, with computational topology or topological data analysis
motivations, have considered the computation of such cycles, generally for integers or
integers modulo p coefficients [17–21].

A combinatorial counterpart of Delaunay energy, called lexicographic order, has
been considered, using the field 2Z/Z of integer modulo 2 instead of R as chain coef-
ficients. Given a point cloud P in Euclidean space, the lexicographic minimal chain,
among chains with vertices in P and whose boundary support is the boundary of
the convex hull of P has the Delaunay triangulation as its support [22]. In [23], the
authors consider lexicographic minimal chains for practical applications to surface
reconstruction in R3.

Outline.

Section 2 introduces the necessary terminology. Section 3 reviews Delaunay complexes
and characterizes them as the triangulations with smallest Delaunay energy. Section 4
defines Delaunay weights and expresses the Delaunay energy as a sum of Delaunay
weights. Section 5 tackles the problem of reconstructing a submanifold M from a
simplicial complex K whose vertices sample M. The section presents a convex opti-
mization problem on the d-chains ofK whose objective function is the Delaunay energy
and whose constraints are linear. We then state our main result, which are conditions
under which a solution to that optimization problem provides a triangulation of M.
Section 6 is dedicated to proving our main result. Section 7 discusses practical aspects.

2 Preliminaries

In this section, we review the necessary background and explain some of our terms.
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2.1 Subsets and submanifolds

Given a set A ⊆ RN and a point x ∈ RN , we say that x is an affine combination of
points in A if we can find a1, . . . , ap in A and real numbers λ1, . . . , λp summing up to 1
such that x =

∑p
i=1 λiai. The set of all affine combinations of points in A is called the

affine space spanned by A and is denoted as aff A. Similarly, we say that x is a convex
combination of points in A if we can find a1, . . . , ap in A and λ1, . . . , λp such that
x =

∑p
i=1 λiai, where

∑p
i=1 λi = 1 and λi ≥ 0 for all 1 ≤ i ≤ p. The set of all convex

combinations of points in A form the convex hull of A and is denoted as convA. The
relative interior of A, denoted as relint(A), represents the interior of A within aff A.
For any x ∈ RN and any r ∈ R, we denote the closed ball with center x and radius
r by B(x, r). We shall say that A ⊆ RN is r-small if it can be enclosed in a ball of
radius r. The r-tubular neighborhood of A is the set of points A⊕r =

⋃
a∈AB(a, r).

The medial axis of A, denoted as axis(A), is the set of points in RN that have at least
two closest points in A. The reach of A is the infimum of distances between A and
its medial axis, and is denoted as reachA. Furthermore, we define the projection map
πA : RN \ axis(A) → A, which associates to each point x its unique closest point in
A. This projection map is well-defined on every subset of RN that does not intersect
the medial axis of A. In particular, it is well-defined on every r-tubular neighborhood
of A with r < reachA. Recall that the angle between two vector spaces V0 and V1

is defined as ∠(V0, V1) = maxv0∈V0 minv1∈V1 ∠v0, v1. The definition is not symmetric
in V0 and V1, unless the two vector spaces V0 and V1 share the same dimension. The
angle between two affine spaces A0 and A1 whose corresponding vector spaces are V0

and V1 is ∠(A0, A1) = ∠(V0, V1) [24].

2.2 Simplicial complexes

In this section, we review some background notation on algebraic topology and refer
the reader to [25] for a detailed introduction to the topic.

All simplices and simplicial complexes that we consider in the paper are abstract.
We recall that an abstract simplicial complex is a collection K of finite non-empty sets
with the property that if σ belongs to K, so does every non-empty subset of σ. Each
element σ of K is called an abstract simplex and its dimension is one less than its
cardinality, dimσ = cardσ − 1. A simplex of dimension i is called an i-simplex. If τ
and σ are two simplices such that τ ⊆ σ, then τ is called a face of σ, and σ is called a
coface of τ . The elements of σ are also referred to as the vertices of σ and the vertex set
of K is the set of vertices of all simplices in K, VertK =

⋃
σ∈K σ. When an abstract

simplex σ ⊆ RN has its vertices in RN , it is naturally associated to the geometric
simplex defined as conv σ. The dimension of conv σ, which is the dimension of the affine
space aff σ, cannot be larger than the dimension of the abstract simplex σ. When the
dimension of the geometric simplex conv σ coincides with that of the abstract simplex
σ, we say that σ is non-degenerate. For a simplicial complex K with vertices in RN ,
we say that K is geometrically realized (or embedded) if (1) dim(σ) = dim(aff σ) for
all σ ∈ K, and (2) conv(α ∩ β) = convα ∩ conv β for all α, β ∈ K.

Given a set of abstract simplices Σ with vertices in RN (not necessarily forming
a simplicial complex), we let Σ[i] designate the set of i-simplices of Σ. We define the
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shadow of Σ as the subset of RN covered by the relative interior of the geometric
simplices associated to the abstract simplices in Σ, |Σ| =

⋃
σ∈Σ relint(conv σ). The

closure of Σ is the smallest simplicial complex that contains Σ.

2.3 Barycentric coordinates

Consider an abstract simplex α ⊆ RN and note that α is non-degenerate if and only
if its vertices are affinely independent. Suppose that α is non-degenerate and consider
the affine combination x =

∑
a∈α λaa with

∑
a∈α λa = 1. Then, the λa are uniquely

determined by x and are called the (normalized) barycentric coordinates of x with
respect to α. In the paper, we shall denote each λa as BarycentricCoordαa (x).

2.4 Chains and weighted norms

Chains play an important role in this work as they provide a tool to embed the discrete
set of candidate solutions (triangulations of M in some simplicial complex K) into a
larger continuous space (the d-chains of K). In this section, we recall some standard
definitions concerning chains from [25]. Given an abstract simplex σ, two orderings of
the vertices of σ are said to be equivalent if they differ from one another by an even
permutation. The orderings of the vertices of σ fall into equivalent classes: two classes
if dimσ > 0 and one class if dimσ = 0. Each of these classes is called an orientation
of σ. An oriented simplex is a simplex σ together with an orientation of σ. We denote
as [v0, . . . , vd] the oriented d-simplex consisting of the d-simplex {v0, . . . , vd} together
with the equivalent class of the particular ordering (v0, . . . , vd). Consider an abstract
simplicial complex K and assume that each simplex σ in K is given an arbitrary
orientation. A d-chain of K with coefficients in R is a formal sum γ =

∑
σ γ(σ)σ,

where σ ranges over all d-simplices of K and γ(σ) ∈ R is the value (or the coordinate)
assigned to the d-simplex σ with the rule that if σ and σ′ are the same simplex but
have two different orientations, then σ = −σ′. The set of such d-chains is a vector space
denoted by Cd(K,R). Recall that the `1-norm of γ is defined by ‖γ‖1 =

∑
σ |γ(σ)|. Let

W be a weight function which assigns a non-negative weight W (σ) to each d-simplex
σ of K. The W -weighted `1-norm of γ is expressed as ‖γ‖1,W =

∑
σW (σ)|γ(σ)|. We

shall say that a chain γ is carried by a subcomplex D of K if γ has value 0 on every
simplex that is not in D. The support of γ is the set of simplices on which γ has a
non-zero value. It is denoted by Supp γ. The boundary operator is a homomorphism
∂ : Cd(K,R)→ Cd−1(K,R) that associates to each oriented d-simplex σ = [v0, . . . , vd]
the (d− 1)-chain:

∂σ =

d∑
i=0

(−1)i [v0, . . . , v̂i, . . . , vd],

where the symbol v̂i means that the vertex vi has been deleted from the sequence
of vertices forming σ. A d-chain γ ∈ Cd(K,R) whose boundary vanishes, ∂γ = 0, is
called a d-cycle.
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3 Background on Delaunay complexes

In this section, we recall basic facts about Delaunay complexes (Section 3.1). We then
give a variational characterization of Delaunay complexes (Section 3.2). Throughout
the section, P designates a finite point set of RN .

3.1 Definitions and basic property

Definition 1 (Delaunay simplex) A Delaunay simplex of P is an abstract simplex σ ⊆ P
for which there exists a ball B whose boundary circumscribes σ and whose interior does not
contain any point of P .

Definition 2 (Delaunay complex) The set of Delaunay simplices form an abstract simplicial
complex called the Delaunay complex of P and is denoted as Del(P ).

We now state a classical result on Delaunay complexes, for which we need two
extra definitions.

Definition 3 (General position) Letting d = dim(aff P ), we say that P ⊆ RN is in general
position if no d + 2 points of P lie on a common (d − 1)-dimensional sphere and no k + 2
points of P lie on the same k-dimensional flat for k < d.

Definition 4 (Triangulation) A triangulation of P is an abstract simplicial complex whose
vertex set is P , whose shadow is convP , and which is geometrically realized.

Theorem 1 When P is in general position, Del(P ) is a triangulation of P .

3.2 A variational characterization

The Delaunay complex of P optimizes many functionals over the set of triangulations
of P [26–28], one of them being the Delaunay energy that we shall now define [29].

In preparation for this, we recall a famous result which says that building a Delau-
nay complex in RN is topologically equivalent to building a lower convex hull in RN+1.
For simplicity, we shall identify each point x ∈ RN with the point (x, 0) in RN+1. Con-
sider the paraboloid P ⊆ RN+1 defined as the graph of the function ‖ · ‖2 : RN → R,
x 7→ ‖x‖2, where ‖ ·‖ designates the Euclidean norm; see Figure 3, left. For each point
x ∈ RN , its vertical projection onto P is the point x̂ = (x, ‖x‖2) ∈ RN+1, which we
call the lifted image of x. Similarly, the lifted image of P ⊆ RN is P̂ = {p̂ | p ∈ P}.
Recall that the lower convex hull of P̂ is the portion of conv P̂ visible to a viewer
standing at xd+1 = −∞. A classical result says that for all σ ⊆ P , the following equiv-
alence holds: σ is a Delaunay simplex of P if and only if conv σ̂ is contained in the
lower convex hull of P̂ [30].

We are now ready to define the Delaunay energy of any triangulation T of P . Let
d = dim(aff P ). Given a triangulation T of P , the Delaunay energy Edel(T ) of T is
defined as the (d + 1)-volume between the d-manifold |T̂ | =

⋃
σ∈T conv σ̂ and the
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x∗σ

RN

P
R

conv σ x

−Powerσ(x)

−Powerσ(x)

R

RN

Fig. 3: Left: the Delaunay weight of σ can be depicted as the (d + 1)-volume of the
blue region between the lifted geometric simplex conv σ̂ and the paraboloid P (see
Lemma 4). Right: the Delaunay weight of σ is also the (d + 1)-volume of the blue
region lying below the graph of −Powerσ and above conv σ.

paraboloid P. Let us give a formula for this energy. Consider a point x ∈ convP .
By construction, x belongs to at least one geometric d-simplex conv σ for some σ ∈
T . Erect an infinite vertical half-line going up from x. This half-line intersects the
paraboloid P at point x̂ and conv σ̂ at point x?σ; see Figure 3, left. We have

Edel(T ) =
∑
σ∈T [d]

∫
x∈conv σ

‖x̂− x?σ‖ dx.

Let us recall a well-known result [10, 28], that is a direct consequence of the lifting
construction:

Theorem 2 When P is in general position, the triangulation of P that minimizes the
Delaunay energy is unique and is the Delaunay complex of P .

4 Delaunay weight

In this section, we define the Delaunay weight of a simplex with vertices in RN
(Section 4.1). We show that the Delaunay energy defined in the previous section can
be expressed as a sum of Delaunay weights (Section 4.2). We then provide an intrinsec
expression for Delaunay weights (Section 4.3) that motivates extending the Delaunay
energy to collection of d-simplices in RN and more generally to d-chains of simplicial
complexes with vertices in RN , as will be done in the next section.

4.1 Definition

Let σ ⊆ RN be an abstract simplex. If σ is non-degenerate, we define S(σ) as the
smallest (N − 1)-sphere that circumscribes σ. We also let Z(σ) and R(σ) denote the
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center and radius of S(σ), respectively. Finally, we introduce the map

x 7→ Powerσ(x) = ‖x− Z(σ)‖2 −R(σ)2,

which associates each point x ∈ RN with the power distance of x from S(σ).

Definition 5 (Delaunay weight) The Delaunay weight of an abstract d-simplex σ ⊆ RN is:

ω(σ) =

{
−
∫
x∈conv σ Powerσ(x) dx if σ is non-degenerate,

0 otherwise.

Figure 3, right depicts graphically the Delaunay weight of a simplex σ ⊆ RN . It
is worth noting that the Delaunay weight is defined for any abstract d-simplex σ,
irrespective of whether σ is the Delaunay simplex of some point set P or not. The
reason for calling it a Delaunay weight will become clear in the next section.

4.2 Delaunay energy as a sum of Delaunay weights

Before showing that the Delaunay energy can be expressed as a sum of Delaunay
weights in Lemma 4, we first provide a useful expression of Powerσ(x) when x is an
affine combination of the vertices of σ (Lemma 3) and deduce an alternative expression
of the Delaunay weight in Lemma 4.

Lemma 3 Let σ ⊆ RN be a non-degenerate simplex and let x be an affine combination of
the vertices of σ. For every z ∈ RN

Powerσ(x) = ‖x− z‖2 −
∑
a∈σ

BarycentricCoordσa(x) ‖a− z‖2.

Proof Recall that Powerσ(x) = ‖x− Z(σ)‖2 −R(σ)2. On one hand, we have

‖x− Z(σ)‖2 = ‖x− z‖2 + 2(x− z) · (z − Z(σ)) + ‖z − Z(σ)‖2.
On the other hand, writing λa = BarycentricCoordσa(x) for short, we have

R(σ)2 =
∑
a∈σ

λa‖Z(σ)− a‖2

=
∑
a∈σ

λa
[
‖Z(σ)− z‖2 + 2(Z(σ)− z) · (z − a) + ‖z − a‖2

]
= ‖Z(σ)− z‖2 + 2(Z(σ)− z) · (z − x) +

∑
a∈σ

λa‖z − a‖2.

Substracting the above expressions of ‖x− Z(σ)‖2 and R(σ)2 yields the result. �

Lemma 4 For any non-degenerate abstract d-simplex σ ⊆ RN , its Delaunay weight repre-
sents the (d + 1)-volume between the lifted geometric simplex conv σ̂ and the paraboloid P,
i.e.

ω(σ) =

∫
x∈conv σ

‖x̂− x?σ‖ dx,

12



where x̂ = (x, ‖x‖2) and x?σ =
∑
a∈σ BarycentricCoordσa(x)â. If P designates a finite point set

of RN in general position and d = dim(aff P ), then the Delaunay energy of any triangulation
T of P can be expressed as

Edel(T ) =
∑

σ∈T [d]

ω(σ).

Proof Letting x ∈ conv σ, we show that −Powerσ(x) = ‖x̂ − x?σ‖. Applying Lemma 3 with
z = 0 and writing λa = BarycentricCoordσa(x) for short, we get that

−Powerσ(x) =
∑
a∈σ

λa ‖a‖2 − ‖x‖2

=

∥∥∥∥∥∑
a∈σ

λa(a, ‖a‖2)− (x, ‖x‖2)

∥∥∥∥∥
=

∥∥∥∥∥∑
a∈σ

λaâ− x̂

∥∥∥∥∥
= ‖x?σ − x̂‖.

The expressions of both ω(σ) and Edel(T ) follow immediately. �

The above lemma suggests the following interpretation of the Delaunay energy.
Given a triangulation T of P , consider the map wT : convP → R whose restriction
to any d-simplex σ of T is defined by wT (x) = −Powerσ(x). The graph of wT is
a d-dimensional piecewise parabolic manifold WT which has been depicted for two
different triangulations in Figure 4. The Delaunay energy can then be interpreted as
the (d+ 1)-volume of the region lying below WT and above convP .

Fig. 4: Two triangulations of six points (black dots) in the plane. For each triangu-
lation T , the Delaunay energy is the volume between the convex hull of the points
and the piecewise parabolic surface WT . The surface WT is lowest and therefore the
Delaunay energy of T is smallest when T is the Delaunay complex as is the case on
the right.
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4.3 Intrinsec closed expression

Below, we give a closed expression for the Delaunay weight due to Chen and Holst
in [12]. For completeness, we provide a proof. Writing vol(σ) for the d-dimensional
volume of conv σ, we have:

Lemma 5 ([12]) The weight of the abstract d-simplex σ = {a0, . . . , ad} is

ω(σ) =
1

(d+ 1)(d+ 2)
vol(σ)

 ∑
0≤i<j≤d

‖ai − aj‖2
 .

Proof Let σ = {a0, a1, . . . , ad} ⊆ RN . If σ is degenerate, then vol(σ) = 0 and the result is
clear. Suppose that σ is non-degenerate and recall that the standard simplex is

∆d = {λ ∈ Rd |
d∑
i=1

λi ≤ 1;λi ≥ 0, i = 1, 2, . . . , d}.

We introduce the map ψ : Rd → Rd, defined by ψ(λ) = a0 +
∑d
i=1 λi(ai − a0), which

establishes a one-to-one correspondence between the points λ of the standard simplex ∆d

and the points x = ψ(λ) of conv σ. Making the change of variable x = ψ(λ)→ λ, we get that:

w(σ) =

∫
λ∈∆d

−Powerσ(ψ(λ)) · | det(Dψ)(λ)| dλ.

Noting that Dψ(λ) is the d × d matrix whose ith column is the vector ai − a0, we deduce
that | det(Dψ)(λ)| = d! vol(σ). Observing that ψ(λ) has (normalized) barycentric coordinates

(1−
∑d
i=1 λi, λ1, λ2, . . . , λd) and applying Lemma 3 with z = a0, we can write:

Powerσ(ψ(λ)) = −

(
d∑
i=1

λi‖ai − a0‖2
)

+ ‖ψ(λ)− a0‖2,

and thus obtain (after plugging in the expression of ψ(λ))

w(σ) = d! vol(σ)

∫
λ∈∆d

 d∑
i=1

λi‖ai − a0‖2 −

∥∥∥∥∥
d∑
i=1

λi(ai − a0)

∥∥∥∥∥
2 dλ.

We then use a formula for integrating a homogeneous polynomial on the standard simplex
that may be found in [31]: ∫

λ∈∆d

λη1

1 . . . ληdd dλ =
η1! . . . ηd!

(d+
∑
i ηi)!

.

We obtain that

w(σ) =
1

(d+ 1)(d+ 2)
vol(σ)

d d∑
i=1

‖ai − a0‖2 − 2
∑

1≤i<j≤d
(ai − a0) · (aj − a0)

 .
Observing that ‖ai − a0‖2 + ‖aj − a0‖2 − 2(ai − a0) · (aj − a0) = ‖ai − aj‖2, we can further
rearrange the above formula to get the result. �
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It follows from Definition 5 but also from the expression of the Delaunay weight
given in Lemma 5 that two isometric simplices have the same Delaunay weight. Hence,
a Delaunay energy can be straightforwardly associated to any collection Σ of d-
simplices living in RN by setting E(Σ) =

∑
σ∈Σ ω(σ). It is then tempting to ask what

would happen if one minimizes this energy over all collections Σ of d-simplices whose
vertices sample a d-dimensional submanifold M and whose union is homeomorphic
to that submanifold. As is, the problem is non-convex. We shall transform it into a
convex problem in the next section.

5 Variational formulation for submanifold
reconstruction

Afterwards, we assume that the shape M we wish to reconstruct is a compact ori-
entable C2 d-dimensional submanifold of RN for some d < N . We let P be a finite
point set that samplesM and suppose furthermore that we have at our disposal a sim-
plicial complex K whose vertices are the points of P . The complex K can be thought
of as some rough approximation of M as illustrated in Figure 5.

M P K

Fig. 5: Left: a d-dimensional submanifoldM (for d = 1) and a noisy sample P ofM.
Right: a simplicial complex K whose vertex set is P .

Details on how to derive K from P are given at the end of the section. In this
section, we describe a convex optimization problem on the d-chains of K and state
conditions under which the solution to that problem is unique and provides a faithful
reconstruction of M. The concept of faithful reconstruction encapsulates what we
mean by a “desirable” reconstruction of M:

Definition 6 (Faithful reconstruction) Consider a subset M⊆ RN whose reach is positive,
and a simplicial complex D with vertex set in RN . We say that D reconstructs M faithfully
(or is a faithful reconstruction of M) if the following three conditions hold:

Embedding: D is geometrically realized;

Closeness: |D| ⊆M⊕r for some 0 ≤ r < reachM;

Homeomorphism: the projection map πM : |D|→M is a homeomorphism.

We note that when D reconstructs M faithfully, |D| and M are homeomorphic
and D is a triangulation of M.
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The rest of the section is organized as follows. Section 5.1 presents our convex
optimization problem on the d-chains of K. Section 5.2 shows that the feasible set
of that problem contains all faithful reconstructions of M in K. In Section 5.3, we
introduce the necessary definitions to state our main theorem in Section 5.4.

Because we have assumedM to be a compact C2 submanifold of RN , the reach of
M is positive and finite [32]. Afterwards, we denote it asR = reachM. Given m ∈M,
we denote the vector tangent space to M at m as TmM and the affine tangent space
toM at m as TmM. Clearly, TmM = x+TxM. In the rest of the section, we assume
that M together with all d-simplices of K have received an arbitrary orientation. We
also assume that |K| ⊆ M⊕r for some 0 ≤ r < reachM and that none of the d-
simplices of K are orthogonal to M. Precisely, defining the angular deviation of a
simplex σ relatively to M as

angularDeviationM(σ) = max
m∈πM(conv σ)

∠(aff σ,TmM),

we assume that each d-simplex σ ∈ K is such that angularDeviationM(σ) < π
2 . This

allows us to assign to each d-simplex σ ∈ K a sign with respect to M as follows:

signM(σ) =

{
1 if the orientation of σ is consistent with that of M,

−1 otherwise.

We refer the reader to Appendix F in [33] for a formal definition of consistency and
more details.

5.1 Least `1-norm problem

We need notation to describe the convex optimization problem that we are considering.
Let ω be the weight function which assigns to each d-simplex σ of K its Delaunay
weight ω(σ) introduced in Section 2. We define the Delaunay energy of the chain
γ ∈ Cd(K,R) to be its ω-weighted `1-norm:

Edel(γ) = ‖γ‖1,ω =
∑
σ

ω(σ) · |γ(σ)| =
∑
σ

(∫
x∈conv σ

−Powerσ(x) dx

)
· |γ(σ)|,

where σ ranges over all d-simplices of K. The Delaunay energy is the objective func-
tion of our optimization problem. To describe the constraint functions, let 1X :
RN → {0, 1} denote the indicator function of a subset X ⊆ RN . Suppose that
|K| ⊆ M⊕r for some 0 ≤ r < reachM and that each d-simplex σ ∈ K satisfies
angularDeviationM(σ) < π

2 . Given m0 ∈ M, we assign to each d-chain γ of K the
real number:

loadm0,M(γ) =
∑

σ∈K[d]

γ(σ) signM(σ)1πM(conv σ)(m0)

and call it the load of γ ∈ Cd(K,R) on M at m0. Roughly, it measures the “flux” of
the chain γ above point m0 ∈M. We illustrate its evaluation in Figure 6.
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Fig. 6: A simplicial complex K whose edges have an orientation consistent with that
of M and a 1-cycle γ of K. To evaluate the load of γ ∈ C1(K,R) on the curve M at
m0, one has first to select edges (depicted in blue) for which there is a point (blue dot)
whose projection ontoM is m0 and sum up the coefficients of γ on these edges. In this
example, loadm0,M(γ) = 1 and therefore γ satisfies the constraints of Problem (?).

Letting m0 be a generic2 point on M, we are interested in the following
optimization problem over the set of chains in Cd(K,R):

minimize
γ

Edel(γ)

subject to ∂γ = 0, (?)

loadm0,M(γ) = 1

Problem (?) is a least-norm problem whose constraint functions ∂ and loadm0,M,K

are clearly linear. It is therefore a convex optimization problem. The first constraint
∂γ = 0 expresses the fact that we are searching for d-cycles. The second constraint
loadm0,M(γ) = 1 is a normalization of γ and forbids the zero chain to belong to the
feasible set. Two chains that satisfy the constraints are depicted in Figures 6 and
7. We shall see that, under the assumptions of our main theorem, the solution to
Problem (?) takes its coordinate values in {0,+1,−1} and is furthermore the code of
a faithful reconstruction of M.

In Problem (?), besides the simplicial complex K that we shall see how to build
from P , the knowledge of the manifoldM seems to be required as well for expressing
the normalization constraint. In Section 7.1, we discuss how to transform Problem (?)
into an equivalent problem that does not refer to M anymore.

2Generic in the sense that it is not in the projection onM of the convex hull of any (d−1)-simplex of K.
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5.2 Faithful reconstructions are encoded in the feasible set

Given a subcomplex D ⊆ K, we associate to D the d-chain codeD of K whose
coordinate on the d-simplex σ is:

codeD(σ) =

{
signM(σ) if σ ∈ D[d],

0 otherwise.

We note that whenever D is a faithful reconstruction ofM, then codeD provides a way
of encoding D as a d-chain, since D can be recovered straightforwardly from codeD
by taking the closure of the support of codeD. The code of a faithful reconstruction is
depicted in Figure 7.

0

00

0
0

0

0

0 0

0

0

00

01

1

1 1
1

1

1

1

1

1

1

1

1

Fig. 7: A 1-chain of K that encodes a faithful reconstruction of curve M. Its coeffi-
cients are either 0 (on grey edges) or 1 (on black edges), assuming the orientation of
edges is consistent with that ofM. This 1-chain satisfies the constraints of Problem (?).

In this section, we show that, under weak conditions on K, if D is a faithful
reconstruction ofM, then codeD satisfies the constraints of Problem (?). Indeed, |D|
being homeomorphic toM, the generic point m0 ∈M is covered by the projection of
the convex hull of a unique d-simplex σ ∈ D and

loadm0,M(codeD) = codeD(σ) signM(σ) = 1.

The next lemma states conditions under which the constraint ∂ codeD = 0 is also
satisfied.

Lemma 6 Let r, ρ ≥ 0 such that ρ <
√

2
4 (R − r). Let K be a simplicial complex such that

|K| ⊆ M⊕r and whose d-simplices are ρ-small and have an angular deviation smaller than
π
4 relatively to M. If the subcomplex D ⊆ K is a faithful reconstruction of M, then codeD
is a cycle.
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Proof We first prove that for all simplices σ ∈ D and all points m ∈ πM(conv σ), we have
that

πM(conv σ) ⊆ B
(
m, sin

(π
4

)
R
)◦
. (1)

Indeed, consider x, x′ ∈ conv σ. Suppose that m = πM(x) and let m′ = πM(x′). We know

from [32, page 435] that for 0 ≤ r < reachM, the projection map πM is
(
R
R−r

)
-Lipschitz

for points at distance less than r from M. It follows that

‖m−m′‖ ≤ R
R− r ‖x− x

′‖ ≤ 2ρ

R− rR <

√
2

2
R

and Inclusion (1) follows.
Given a simplicial complex L and a point x ∈ RN , we define the star of x in L as the set

of simplices St(x, L) = {σ ∈ L | x ∈ conv σ}. Since D is a faithful reconstruction of M, |D|
is a d-dimensional submanifold. Hence, each (d− 1)-simplex τ ∈ D has exactly two d-cofaces
σ1 and σ2; see Figure 8. Consider a point x in the relative interior of τ and its projection
m = πM(x) onto M. The star of x in D consists of the two d-simplices σ1 and σ2 and
the common (d− 1)-face τ . It follows that the set πTmM(St(x,D)) possesses exactly two d-
simplices σ′1 = πTmM(σ1) and σ′2 = πTmM(σ2), and one (d−1)-simplex τ ′ = πTmM(τ). As
we project the d-simplex σi = [u0, . . . , ud], let us preserve the ordering of the vertices, that is,
let σ′i = [πTmM(u0), πTmM(u1), . . . , πTmM(ud)]. Let us give to TmM an orientation that
is consistent with that of M. Inclusion (1) allows us to apply Lemma ?? in [33, Appendix
F]: each d-simplex σ′i has the same orientation with respect to TmM than that of σi with
respect to M. Let si = signTmM(σ′i) = signM(σi).

M

TmM

σ1 σ2

σ′1 σ′2

τ

τ ′

x

m

Fig. 8: Notation for the proof of Lemma 6. In this example, s1 = −1 and s2 = +1.

We claim that the two geometric d-cofaces conv σ′1 and conv σ′2 of conv τ ′ have disjoint
relative interiors. Indeed, let us denote by Ux an open neighborhood of x in RN and suppose
that Ux is sufficiently small so that its restriction to |K| is contained in | St(x,D)|. For
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i = 1, 2, let U ix = Ux ∩ aff σi. Note that the map πTmM ◦ πM|Uix
is differentiable and the

map πTmM|Uix
is affine. Both maps have equal differential maps at x, that is:

Dx
(
πTmM ◦ πM|Uix

)
= Dx

(
πTmM|Uix

)
. (2)

Let T+
i denote the set of all vectors parallel to aff σi and pointing inside conv σi after trans-

lation at x. This set forms a closed half-space in the vector tangent space to aff σi. Since
πTmM|Uix

is affine, it coincides, up to a constant, with its differential at x and using Equation

(2), we get that

conv σ′i ⊆ x+ Dx
(
πTmM|Uix

)
(T+
i ) = x+ Dx

(
πTmM ◦ πM|Uix

)
(T+
i ). (3)

Observe that the map πTmM ◦ πM|Uix
, being the composition of two injective functions, is

injective. It follows that Dx
(
πTmM ◦ πM|U1

x

)
(T+

1 ) and Dx
(
πTmM ◦ πM|U2

x

)
(T+

2 ) are two

half-spaces in the vector space TmM with disjoint interiors. Using Equation (3), we obtain
that conv σ′1 and conv σ′2 also have disjoint interiors, as claimed.

It follows that ∂(s1σ
′
1 + s2σ

′
2) is 0 on τ ′, and consequently ∂(s1σ1 + s2σ2) is 0 on τ . We

have shown that ∂ codeD = 0. �

5.3 Geometric conditions on the sample

Recall that our goal is to give conditions under which a solution to Problem (?)
provides a faithful reconstruction of M. To express the conditions that we need, let
us introduce some definitions and notations.

Definition 7 (Dense sample) We say that P is an ε-dense sample of M if for every point
m ∈M, there is a point p ∈ P with ‖p−m‖ ≤ ε or, equivalently, if M⊆ P⊕ε.

Definition 8 (Accurate sample) We say that P is a δ-accurate sample of M if for every
point p ∈ P , there is a point m ∈M with ‖p−m‖ ≤ δ or, equivalently, if P ⊆M⊕δ.

The separation of a point set P is

separation(P ) = min
p6=q∈P

‖p− q‖.

We recall that the height of a simplex σ is

height(σ) = min
v∈σ

d(v, aff(σ \ {v})).

The height of σ vanishes if and only if σ is degenerate. The protection of a simplex σ
relatively to a point set Q is

protection(σ,Q) = min
q∈πaff σ(Q\σ)

d(q, S(σ)).

20



We stress that our definition of a simplex protection differs slightly from the one in
[16, 34]. We now associate to a finite point set P and a scale ρ three quantities that
describe the quality of the pair (P, ρ) at dimension d:

height(P, ρ) = min
σ

height(σ),

angularDeviationM(P, ρ) = max
σ

angularDeviationM(σ),

protection(P, ρ) = min
σ

protection(σ, P ∩B(cσ, ρ)),

where the two minima and the maximum are over all ρ-small d-simplices σ ⊆ P .
Observe that assuming height(P, ρ) > 0 is equivalent to assuming that all ρ-small
d-simplices of P are non-degenerate.

Definition 9 (Safety condition) Let ε, δ, and ρ be non-negative real numbers. The safety
condition on (P, ε, δ) at scale ρ is the existence of a real number θ ∈

[
0, π6

]
such that:

angularDeviationM(P, ρ) ≤ θ

2
− arcsin

(
ρ+ δ

R

)
,

separation(P ) > 8(δθ + ρθ2) + 6δ +
2ρ2

R ,

protection(P, 3ρ) > 8(δθ + ρθ2)

(
1 +

4dε

height(P, ρ)

)
.

Roughly speaking, assuming the safety condition on (P, ε, δ) at scale ρ enforces
ρ-small d-simplices of P to make a sufficiently small angle relatively to M. It also
enforces P to be both sufficiently separated and protected at scale 3ρ. As explained in
the companion paper [1], the safety condition on (P, ε, δ) can be met by considering a(

20ε
21

)
-dense

(
δ
2

)
-accurate point set P and perturbing it as described in [1].

5.4 Main theorem

In the statement of our main theorem, there is a constant Ω(∆d) that depends only
upon the dimension d and whose definition is given in the proof of Lemma 16. Let
C(P, r) denote the set of simplices of P that are r-small, also known as the Čech
complex of P at scale r.

Theorem 7 (Faithful reconstruction by a variational approach) Let M be a compact ori-
entable C2 d-dimensional submanifold of RN for some d < N . Let ε, δ, and ρ be non-negative
real numbers such that δ ≤ ε and 16ε ≤ ρ < R

4 . Let Θ = angularDeviationM(P, ρ) and
assume that Θ ≤ π

6 . Set

J =
(R+ ρ)d

(R− ρ)d (cos Θ)min{d,N−d} − 1.
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Let P be a δ-accurate ε-dense sample of M such that height(P, ρ) > 0. Suppose that the
safety condition on (P, ε, δ) is satisfied at scale ρ. Suppose furthermore that

protection(P, 3ρ)2 + protection(P, 3ρ) separation(P ) >

max

{
10ρΘ(ε+ ρΘ),

4J(1 + J)

(d+ 2)(d− 1)! Ω(∆d)
ρ2
}
.

(4)

Consider a simplicial complex K such that

Del(P ) ∩ C(P, ε) ⊆ K ⊆ C(P, ρ). (5)

Then Problem (?) has a unique solution and the closure of the support of that solution is a
faithful reconstruction of M.

Observe that our main theorem does not require K to be geometrically realized
nor to retain the homotopy type ofM. One may ask about the feasability of realizing
the assumptions of Theorem 7. In Section 7.2, we explain how to apply Moser Tardos
Algorithm ([35] and [16, Section 5.3.4]) as a perturbation scheme for enforcing both
the safety condition and Condition (4) required by Theorem 7.

Choosing the simplicial complex K.

Recall that the Čech complex of P at scale r, denoted as C(P, r), is the set of simplices
of P that are r-small. The Rips complex of P at scale r, denoted as R(P, r), consists
of all simplices of P with diameter at most 2r. It is a more easily-computed version of
the Čech complex. We stress that our main theorem applies to any simplicial complex
K such that Del(P ) ∩ C(P, ε) ⊆ K ⊆ C(P, ρ). Since C(P, r) ⊆ R(P, r) ⊆ C(P,

√
2r)

for all r ≥ 0, it applies in particular to any K = R(P, r) with ε ≤ r ≤ ρ√
2
. This

choice of K is well-suited for applications in high dimensional spaces, while choosing
K = Del(P ) ∩ C(P, r) for any ε ≤ r ≤ ρ may be more suited for applications in low
dimensional spaces.

6 Proving the main theorem

6.1 Technical lemma

The proof of Theorem 7 relies on a technical lemma which we now state and prove.

Lemma 8 Let D be an orientable d-dimensional submanifold (with or without boundary) of
RN and let K be a simplicial complex with vertices in RN . Assume that there is a contin-
uous function ϕ : |K| → D. Suppose that for each d-simplex σ ∈ K, we have two positive
weights W (σ) ≥ Wmin(σ) and that there exists an integrable function f : D → R+ such that
Wmin(σ) =

∫
ϕ(conv σ) f . Consider the d-chain γmin on K defined by

γmin(σ) =

{
signD(σ) if Wmin(σ) = W (σ),

0 otherwise.

Suppose that
∑
σ∈K[d] γmin(σ) signD(σ)1ϕ(conv σ)(x) = 1, for almost all x ∈ D. Then, γmin is

the unique solution to the following optimization problem over the set of chains in Cd(K,R):
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minimize
γ

‖γ‖1,W

subject to
∑

σ∈K[d]

γ(σ) signD(σ)1ϕ(conv σ)(x) = 1, for almost all x ∈ D

Proof We note that the problem is invariant under change of orientation of d-simplices in K
and thus we may assume that every d-simplex σ in K has an orientation that is consistant
with that of D, that is, signD(σ) = 1 for all σ ∈ K[d]. With this assumption, the lemma
simply asserts the following. Consider the d-chain γmin on K defined by

γmin(σ) =

{
1 if Wmin(σ) = W (σ),

0 otherwise.

Suppose that
∑
σ∈K[d] γmin(σ)1ϕ(conv σ)(x) = 1, for almost all x ∈ D. Then the `1-like norm

‖γ‖1,W attains its minimum over all d-chains γ such that∑
σ∈K[d]

γ(σ)1ϕ(conv σ)(x) = 1, for almost all x ∈ D (6)

if and only if γ = γmin.
We write σ̃ = ϕ(conv σ) throughout the proof for a shorter notation. We prove the lemma

by showing that for all d-chains γ on K that satisfy constraint (6), we have:

‖γ‖1,W ≥ ‖γ‖1,Wmin
≥
∫
D
f = ‖γmin‖1,Wmin

= ‖γmin‖1,W , (7)

with the first inequality being an equality if and only if γ = γmin. Clearly, ‖γ‖1,W ≥
‖γ‖1,Wmin

because W (σ) ≥ Wmin(σ). To obtain the second inequality, recall that we have
assumed

∑
σ γ(σ)1σ̃(x) = 1 almost everywhere in D. We use this to write that:

‖γ‖1,Wmin
≥
∑
σ

γ(σ)

∫
σ̃
f =

∑
σ

γ(σ)

∫
D
f1σ̃ =

∫
D
f
∑
σ

γ(σ)1σ̃ =

∫
D
f, (8)

where sums are over all d-simplices σ in K. Setting γ = γmin in (8), we observe that the
inequality in (8) becomes an equality because none of the coefficients of γmin are negative
by construction. It follows that

∫
D f = ‖γmin‖1,Wmin

. Finally, ‖γmin‖1,Wmin
= ‖γmin‖1,W

because γmin has been defined so that for all simplices σ in its support, Wmin(σ) = W (σ).
We have thus established (7). Suppose now that γ 6= γmin and let us prove that ‖γ‖1,W >
‖γ‖1,Wmin

, or equivalently that∑
σ∈Supp γ

|γ(σ)| (W (σ)−Wmin(σ)) > 0.

Since none of the terms in the above sum are negative, it suffices to show that there exists
at least one simplex σ ∈ Supp γ for which W (σ) > Wmin(σ). By contradiction, assume that
for all σ ∈ Supp γ, W (σ) = Wmin(σ). By construction, we thus have the implication: γ(σ) 6=
0 =⇒ γmin(σ) = 1, and therefore Supp γ ⊆ Supp γmin. But, since

∑
σ γmin(σ)1σ̃(x) = 1 for

almost all x ∈ D and coefficients of γmin are either 0 or 1, it follows that for almost all x ∈ D,
point x is covered by a unique d-simplex in the support of γmin. Hence, the simplices in
Supp γmin have pairwise disjoint interiors while their union covers D. Since

∑
σ γ(σ)1σ̃(x) = 1

for almost all x ∈ D, the simplices in Supp γ must also cover D while using only a subset of
simplices in Supp γmin. The only possibility is that γ = γmin, yielding a contradiction. �
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6.2 Overview of the proof

We first illustrate the use of the technical lemma by establishing a simple variant of
Theorem 7 in which M has no curvature. We then pinpoint what has to be modified
in the proof to establish Theorem 7.

Euclidean setting.

Theorem 9 Let P be a finite point set of RN in general position and let K be a simplicial
complex with vertex set P such that Del(P ) ⊆ K. Let M = convP and let d = dim(aff P ).
Then, codeDel(P ) is the unique solution to the following optimization problem over the set of
chains in Cd(K,R):

minimize
γ

Edel(γ)

subject to
∑

σ∈K[d]

γ(σ) signM(σ)1conv σ(x) = 1, for almost all x ∈M

Proof The proof consists in applying the technical lemma (Lemma 8). In preparation for
this, we make the following definitions. Let D = M = convP = |K|. Clearly, D is an
orientable d-dimensional submanifold (with boundary). Let ϕ be the identity map of D and
let f : D → R+ be the map defined by:

f(x) = min
σ

(−Powerσ(x)) ,

where the minimum is taken over all d-simplices σ ∈ K such that x ∈ conv σ. Finally, for any
σ ∈ K, we let W (σ) = ω(σ) be the Delaunay weight of σ and define the weight:

Wmin(σ) =

∫
x∈conv σ

f(x) dx. (9)

By construction, W (σ) ≥Wmin(σ). Because P is in general position, all d-simplices of K are
non-degenerate and Wmin(σ) > 0. Figure 9 depicts the two weights associated to a simplex
β. Consider the d-chain γmin on K:

γmin(σ) =

{
signD(σ) if Wmin(σ) = W (σ),

0 otherwise.

Before applying the technical lemma, we make three observations, one per step.

Step 1: For any d-simplices α ∈ Del(P ) and β ∈ K \Del(P ) and for any x ∈ convα∩conv β,
we have that −Powerα(x) ≤ −Powerβ(x) and the inequality is strict whenever x 6∈ conv(α∩
β) as illustrated in Figure 9.

Step 2: For every point x ∈ D, we thus have that f(x) = −Powerα(x), where α is any
d-simplex of Del(P ) whose convex hull contains x.

Step 3: For all simplices σ ∈ K, the following property holds: Wmin(σ) = W (σ) if and only
if σ is a Delaunay d-simplex of P .

Hence, γmin = codeDel(P ) and applying Lemma 8 yields the result. �
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x

−Powerβ(x)

−Powerα(x)

R

aff P

β α

Fig. 9: The two weights W (β) and Wmin(β) defined in the proof of Theorem 9 can
be depicted as the volume of the blue region and the volume of the the yellow region,
respectively. The blue region is the part of the subgraph of −Powerβ lying above
conv β and the yellow region is the part of the subgraph of f lying above conv β.

Adapting the proof to the submanifold setting.

In the submanifold setting, we let M be an orientable C2 d-dimensional submanifold
of RN and let P be a finite δ-accurate ε-dense sample of M. We also consider a
simplicial complex K with vertex set P and let ρ ≥ 0 be a scale parameter. Assuming
thatM, P ε, δ and ρ satisfy the assumptions of Theorem 7, we now give an overview
of our proof of Theorem 7.

The proof consists in applying the technical lemma, following for this the same
steps as in the proof of Theorem 9. However, the different steps are now more involved
as is the definition of the various objects required to apply the technical lemma. First
of all, we introduce in Section 6.3 a simplicial complex, called the Delloc complex
of P at scale ρ and denoted as Dellocd(P, ρ). This complex is going to act as the
counterpart of the Delaunay complex of P in the Euclidean setting. In particular, we
aim at showing that the unique solution to Problem (?) is codeDellocd(P,ρ) (instead of
codeDel(P ) in the Euclidean setting).

We first show in Section 6.3 that, under the assumptions of Theorem 7,
|Dellocd(P, ρ)| is a faithful reconstruction ofM (Theorem 10) and Dellocd(P, ρ) ⊆ K
(Remark 2). The set D = |Dellocd(P, ρ)| is thus an orientable d-dimensional sub-
manifold of RN , which is going to play the role of convP in the Euclidean setting.
Next we define ϕ : |K| → D which maps any y ∈ |K| to the point x ∈ D such that
πM(x) = πM(y). We then define the map f : D → R+ by

f(x) = min
σ

(−Powerσ(y)) ,

where the minimum is taken over all d-simplices σ ∈ K and all points y ∈ conv σ such
that πM(x) = πM(y). Finally, for any σ ∈ K, we let W (σ) = ω(σ) be the Delaunay
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weight of σ and define the weight:

Wmin(σ) =

∫
x∈ϕ(conv σ)

f(x) dx. (10)

By construction, W (σ) ≥ Wmin(σ) and because every d-simplex σ ∈ K is non-
degenerate, Wmin(σ) > 0. Figure 10 depicts the two weights associated to a simplex
β.

−Powerβ(y)

M

Dellocd(P, ρ)

ϕ(conv β)RN

R

β

−Powerα(x)

πM(x) = πM(y)

y

x

α

Fig. 10: The two weights W (β) and Wmin(β) used in the proof of Theorem 7 can be
depicted as the volume of the blue region and the volume of the yellow region, respec-
tively. The complex Dellocd(P, ρ) is formed of the five black dots, the brown segment
and the three green segments. The green polygonal chain represents ϕ(conv β).

The first step in the proof of Theorem 9 shows that −Powerα(x) ≤ −Powerβ(x)
for any d-simplices α ∈ Del(P ) and β ⊆ P and for any x ∈ convα ∩ conv β. One
difficulty in the submanifold setting is that now d-simplices of K do not lie anymore
in the same d-dimensional affine space as illustrated in Figure 10. Nonetheless, we
can still compare Powerα(x) and Powerβ(y) for two d-simplices α ∈ Dellocd(P, ρ) and
β ⊆ P , and for two points x ∈ convα and y ∈ conv β, assuming that they share
the same projection onto M, i.e. assuming that πM(x) = πM(y). This is the goal of
Section 6.4.

In a second step, we establish that for every point x ∈ D, we have that f(x) =
−Powerα(x), where α is any d-simplex of Dellocd(P, ρ) whose convex hull contains x
(Lemma 15 in Section 6.5).

In a third step, we check that we have defined the two weight functions W and
Wmin in such a way that W (σ) = Wmin(σ) if and only if σ belongs to the Delloc
complex of P . This is done in Section 6.5 thanks to Lemmas 15 and 16. The tricky part
consists in showing that Wmin(β) < W (β) whenever β is not in the Delloc complex of
P . Indeed, to compare the two quantities, we make a change of variable which possibly
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can jeopardize the strict inequality but which we are able to counterbalance, thanks to
the conditions we are assuming on P (and in particular a sufficient protection of P ).

Finally, all the elements are put together in Section 6.5 where one can find the
proof of the main theorem.

6.3 Delloc complexes

In this section, we define the Delloc complex. We then recall a key result established in
the companion paper [1]: when the Delloc complex is computed over a finite point set
P that samples some d-dimensional submanifold of RN , it provides a faithful recon-
struction of that submanifold. Incidentally, under the right assumptions, the Delloc
complex coincides with the flat Delaunay complex [1] and the tangential Delaunay
complex [15, 16]. Since all the results in this paper are based on the property for a
simplex to belong to the Delloc complex, we find it more enlightening to formulate
the results of this paper using the Delloc complex.

a
b

cab

x

y

ρ

Fig. 11: A set of black dots and its 1-dimensional Delloc complex at scale ρ. The edge
ab belongs to the Delloc complex because ab is a Delaunay edge of the four points
{a, b, x, y} obtained by projecting the four black dots inside B(cab, ρ) onto the line
passing through a and b.

Definition.

Afterwards, P designates a finite set of points in RN , d designates an integer in [0, N)
and ρ ≥ 0 designates a scale parameter.

Definition 10 (Delloc complex) We say that a simplex σ is delloc in P at scale ρ if

σ ∈ Del(πaff σ(P ∩B(cσ, ρ))),

where cσ denotes the center of the smallest N -ball enclosing σ. The d-dimensional Delloc
complex of P at scale ρ, denoted by Dellocd(P, ρ), is the set of d-simplices that are delloc in
P at scale ρ together with all their faces; see Figure 11.
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Remark 1 It is easy to see that if 2R(σ) ≤ ρ, then the smallest circumsphere S(σ) of σ is
contained in B(cσ, ρ). It follows that a delloc simplex σ in P at scale ρ is also a Gabriel
simplex of P , by which we mean that S(σ) does not enclose any point of P in its interior. In
particular, when 2R(σ) ≤ ρ, then σ is a Delaunay simplex of P .

Key result.

We now recall a key result established in the companion paper [1] and which gives
condition under which the Delloc complex of P is a faithful reconstruction of M.

Theorem 10 (Faithful reconstruction by a geometric approach) Let ε, δ, and ρ be non-
negative real numbers such that δ ≤ ε and 16ε ≤ ρ < R

4 . Let P be a δ-accurate ε-dense
sample of M such that height(P, ρ) > 0. Suppose that the safety condition on (P, ε, δ) is
satisfied at scale ρ. Then, Dellocd(P, ρ) is a faithful reconstruction of M. Furthermore, for
all d-simplices σ ∈ Dellocd(P, ρ), we have R(σ) ≤ ε.

Remark 2 Under the assumptions of Theorem 10, Remark 1 implies that the Delloc complex
of P at scale ρ is a subset of the Delaunay complex of P , that is, Dellocd(P, ρ) ⊆ Del(P ). It
follows that under the assumptions of Theorem 10:

Dellocd(P, ρ) ⊆ Del(P ) ∩ C(P, ε)

and therefore any simplicial complex K that satisfies the assumptions of Theorem 7 contains
Dellocd(P, ρ).

6.4 Comparing power distances

The goal of this section is to relate the two maps Powerα(x) and Powerβ(y) for two
d-simplices α ∈ Dellocd(P, ρ) and β ⊆ P , and for two points x ∈ convα and y ∈
conv β, such that πM(x) = πM(y). The main result of the section is stated in the
following lemma and proved at the end of the section. We recall that given a non-
degenerate simplex α and a point x ∈ aff σ, the (normalized) barycentric coordinates
of x relatively to the simplex α are real numbers {λa}a∈α such that x =

∑
a∈α λaa

and
∑
a∈α λa = 1. We write

BarycentricCoordαa (x) = λa

Lemma 11 Let ε, δ, ρ ≥ 0 such that 0 ≤ 2ε ≤ ρ, and 16δ ≤ ρ ≤ R3 . Suppose that P ⊆M⊕δ.
Let p = protection(P, 3ρ), s = separation(P ), and Θ = angularDeviationM(P, ρ). Assume
that Θ ≤ π

6 and

10ρΘ (ε+ ρΘ) < p2 + ps.

Then, for every non-degenerate ε-small d-simplex α ∈ Dellocd(P, ρ), every non-degenerate
ρ-small d-simplex β ⊆ P , every x ∈ convα, and every y ∈ conv β such that πM(x) = πM(y):

−Powerβ(y) + Powerα(x) ≥ 1

2

(
p2 + ps

) ∑
b∈β\α

BarycentricCoordβb (y).
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b2 ∈ β \ α

b0 ∈ α ∩ β

aff α

α

y

β

b1 ∈ α ∩ βa

Fig. 12: Notation for the proof of Lemma 12.

Lemma 12 Let α and β be two non-degenerate abstract d-simplices in RN such that α ∈
Del(πaff α(α ∪ β)). Let p = protection(α, β). Then for every y ∈ conv β, we have

Powerβ(y) ≤ Powerα(πaff α(y))− (p2 + 2pR(α))
∑
b∈β\α

BarycentricCoordβb (y).

Proof See Figure 12. Let Z(α) be the radius of the (d − 1)-dimensional circumsphere of α.
Clearly, ‖a−Z(α)‖ = R(α) for all a ∈ α. Since α ∈ Del(πaff α(α∪β)) and p = protection(α, β),
we get:

(R(α) + p)2 ≤ ‖πaff α(b)− Z(α)‖2, for all b ∈ β \ α,

R(α)2 = ‖πaff α(b)− Z(α)‖2, for all b ∈ β ∩ α.

Let µb = BarycentricCoordβb (y) and note that µb ≥ 0. Multiplying both sides of each equation
above by µb and summing over all b ∈ β, we obtain:

R(α)2 + (p2 + 2pR(α))
∑
b∈β\α

µb ≤
∑
b∈β

µb‖πaff α(b)− Z(α)‖2. (11)

For short, write y′ = πaff α(y) and β′ = πaff α(β). Noting that y′ =
∑
b∈β µbb

′ and applying
Lemma 3 with z = Z(α), we get that

Powerβ′(y
′) = ‖y′ − Z(α)‖2 −

∑
b∈β

µb‖πaff α(b)− Z(α)‖2.

Substracting ‖y′−Z(α)‖2 from both sides of (11) and using the above expression, we obtain

−Powerα(y′) + (p2 + 2pR(α))
∑
b∈β\α

µb ≤ −Powerβ′(y
′).

Applying Lemma 3 again, with Z = y′ and Z = y respectively, we get that:

−Powerβ′(y
′) =

∑
b∈β

µb‖πaff α(b)− πaff α(y)‖2 ≤
∑
b∈β

µb‖b− y‖2 = −Powerβ(y),

which concludes the proof. �
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Lemma 13 Let α and β be two non-degenerate abstract d-simplices in RN such that α ∈
Del(πaff α(α ∪ β)). Let p = protection(α, β) and Θ = angularDeviationM(α). Suppose that
both convα and conv β are contained in the

(ρ
4

)
-tubular neighborhood of M with ρ < 4R.

Suppose furthermore that β is ρ-small. If Θ ≤ π
6 and

5ρ sin(Θ)
(

2R(α) +
ρ

2
sin(Θ)

)
< p2 + 2pR(α),

then for every x ∈ convα and every y ∈ conv β with πM(x) = πM(y), we have

Powerβ(y) ≤ Powerα(x)− 1

2
(p2 + 2pR(α))

∑
b∈β\α

BarycentricCoordβb (y).

Proof Consider a point x ∈ convα and a point y ∈ conv β with πM(x) = πM(y). We
distinguish two cases depending on whether y belongs to conv(α ∩ β) or not.

First, assume that y ∈ conv(α ∩ β). In that case, we claim that the only possibility is
that x = y. Indeed, assume for a contradiction that this is not the case. Then, we would
have two distinct points x 6= y of convα that share the same projection onto M, showing
that ∠(aff α,TπM(x)M) = π

2 for some x ∈ convα and contradicting our assumption that
Θ < π

6 . Hence, x = y ∈ conv(α ∩ β). We claim that furthermore Powerα(x) = Powerβ(y).
Indeed, Lemma 3 implies that when x is an affine combination of points in α, that is, when
x =

∑
a∈α λaa with

∑
a λa = 1, then Powerα(x) = −

∑
a∈α λa‖x − a‖

2. In particular, if x
belongs to the convex hull of a face of α, the expression of the power distance depends only
upon the vertices of that face. It follows that

Powerα(x) = Powerα∩β(x) = Powerα∩β(y) = Powerβ(y).

Since y ∈ conv(α ∩ β), we have
∑
b∈β\α BarycentricCoordβb (y) = 0 and combining this with

the above equality, we get the desired inequality.

M

v′

v ∈ β \ α
β

α

y

xy′ u ∈ α ∩ β

πM(x) = πM(y)

θ

M⊕δ

aff α

Fig. 13: Right: Notation for the proof of Lemma 13. We know by Lemma 14 that if
α, β ⊆M⊕δ with δ ≤ ρ

16 , then convα, conv β ⊆M⊕
ρ
4 as assumed in Lemma 13.

Second, assume that y ∈ conv β\conv(α∩β); see Figure 13. Write µb = BarycentricCoordβb (y)
and note that µb ≥ 0. Letting y′ = πaff α(y), we know by Lemma 12 that:

Powerβ(y) ≤ Powerα(y′)− (p2 + 2pR(α))
∑
b∈β\α

µb. (12)
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Because y 6∈ conv(α ∩ β), we have
∑
b∈α∩β µb 6= 1 and therefore

∑
b∈β\α µb 6= 0. First,

suppose that y = x. In that case, y′ = x and the result follows immediately. Second, suppose
that y 6= x. We claim that in that case we also have y 6= y′. Indeed, if we were to have
that y = y′, then both x and y would belong to aff α and since πM(x) = πM(y), this
would mean that ∠(aff α,TπM(x)M) = π

2 for x ∈ convα, contradicting our assumption that

Θ < π
6 . Thus, x 6= y and y 6= y′, and we can define the angle θ = ∠xyy′. Noting that

θ ≤ ∠(aff α,TπM(x)M) ≤ Θ and ‖x − y′‖ = ‖x − y‖ sin θ, and recalling that Z(α) is the
radius of the (d− 1)-dimensional circumsphere of α, we have:

Powerα(y′)− Powerα(x) = ‖y′ − Z(α)‖2 − ‖x− Z(α)‖2 = (y′ − x) · (x+ y′ − 2Z(α))

≤ ‖x− y′‖ ·
(
‖x− Z(α)‖+ ‖y′ − Z(α)‖

)
≤ ‖x− y′‖ ·

(
2‖x− Z(α)‖+ ‖x− y′‖

)
≤ ‖x− y‖ sin(θ) (2R(α) + ‖x− y‖ sin(θ)) . (13)

Writing m = πM(x) = πM(y), we have ‖x − y‖ ≤ ‖x −m‖ + ‖m − y‖ ≤ ρ
2 . Summing up

Inequalities (12) and (13), we get

Powerβ(y)− Powerα(x) ≤ − (p2 + 2pR(α))
∑
b∈β\α

µb︸ ︷︷ ︸
A

+ ‖x− y‖ sin(Θ)
(

2R(α) +
ρ

2
sin(Θ)

)
︸ ︷︷ ︸

B

.

To establish the lemma in the second case, it suffices to show that 2B < A, that is,

2‖x− y‖ sin Θ ·
(

2R(α) +
ρ

2
sin Θ

)
< (p2 + 2pR(α))

∑
b∈β\α

µb. (14)

We consider two subcases:

Subcase 1: α ∩ β = ∅. In that case,
∑
b∈β\α µb = 1, and because 2‖x − y‖ ≤ 4ρ ≤ 5ρ, one

can see that (14) follows from our assumptions.

Subcase 2: α ∩ β 6= ∅. In that case, we know that there exists a point u ∈ conv(β ∩ α) and a
point v ∈ conv(β \α) such that y =

∑
b∈β∩α µbu+

∑
b∈β\α µbv; see Figure 13. Furthermore,

letting v′ = πaff α(v) we have∑
b∈β\α

µb =
‖y − u‖
‖v − u‖ ≥

‖y − y′‖
‖v − u‖ ≥

‖x− y‖ cos θ

Diam(β)
≥ ‖x− y‖ cos θ

2ρ
≥
√

3

4ρ
· ‖x− y‖.

Again, (14) follows from our assumptions. �

The next lemma says that if a subset σ ⊆ RN is sufficiently small and sufficiently
close to a subset A ⊆ RN compare to the reach of A, then the convex hull of σ is not
too far away from A.

Lemma 14 Let 16δ ≤ ρ ≤ reachA
3 . If the subset σ ⊆ A⊕δ is ρ-small, then conv σ ⊆ A⊕

ρ
4 .

Proof Let R = reachA. Applying Lemma 14 in [36], we get that conv σ ⊆ A⊕r for r =

R−
√

(R− δ)2 − ρ2. Since δ ≤ ρ
16 , we deduce that r

R ≤ 1−
√(

1− ρ
16R

)2 − ρ
R

2
and since

for all 0 ≤ t ≤ 1
3 we have 1−

√(
1− t

16

)2 − t2 ≤ t
4 , we obtain the result. �
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We are now ready to prove Lemma 11.

Proof of Lemma 11 Let α be a non-degenerate ε-small d-simplex of Dellocd(P, ρ). Because
α ∈ Dellocd(P, ρ), we have that α ∈ Del(πaff σ(P ∩ B(cσ, ρ))), and because α is ε-small,
we have that B(Z(α), R(α)) ⊆ B(cσ, 2ε) ⊆ B(cσ, ρ) and consequently α ∈ Del(πaff σ(P ∩
B(cσ, 3ρ))).

Let β be a non-degenerate ρ-small d-simplex of P . Assume that πM(α) ∩ πM(β) 6= ∅
and let us show that β ⊆ P ∩ B(cσ, 3ρ). Suppose that x ∈ convα and y ∈ conv β share
the same projection m onto M, that is, m = πM(x) = πM(y). Since both α and β are
ρ-small, Lemma 14 implies that both convα and conv β are contained in the

(ρ
4

)
-tubular

neighborhood of M and in particular ‖x − y‖ ≤ ‖x −m‖ + ‖m − y‖ ≤ ρ
4 + ρ

4 ≤
ρ
2 . For all

vertices b ∈ β, we thus have

‖cα − b‖ ≤ ‖cα − x‖+ ‖x− y‖+ ‖y − b‖ ≤ ε+
ρ

2
+ 2ρ ≤ 3ρ,

showing that β ⊆ P ∩B(cσ, 3ρ). Hence, we get that α ∈ Del(πaff σ(α∪β)) and can easily see
that p = protection(P, 3ρ) ≤ p̃ = protection(α, β). Let Θ̃ = angularDeviationM(α) ≤ Θ. To
apply Lemma 13, we need to verify that

5ρ sin(Θ̃)
(

2R(α) +
ρ

2
sin(Θ̃)

)
< p̃2 + 2p̃R(α).

Since s
2 ≤ R(α) ≤ ε and sin t ≤ t for all t ≥ 0, this follows from:

10ρΘ (ε+ ρΘ) < p2 + ps,

which is a consequence of our hypotheses. �

6.5 Final

Suppose that K is a simplicial complex with vertex set P . Write D = Dellocd(P, ρ),
D = |D| and K = |K| for short. In this section, we prove our main theorem by applying
Lemma 8. This requires us to define two maps ϕ : K → D and f : D → R+, two
weights W (α) and Wmin(α) for each d-simplex α ∈ K, and to check that these maps
and weights satisfy the requirements of Lemma 8. For each α ∈ K, let W (α) = ω(α)
be the Delaunay weight of α. To be able to define ϕ, f , and Wmin, we assume that
the following conditions are met:

• D is a faithful reconstruction of M;
• For every d-simplex σ ⊆ K, the map πM

∣∣
conv σ

is well-defined and injective.

These conditions are easily derived from the assumptions of the main theorem. We
are now ready to introduce additional notation. Consider a subset X ⊆ RN and
suppose that the map πM

∣∣
X

is well-defined and injective. Then it is possible to define
a bijective map πX→M : X → πM(X). Because D is a faithful reconstruction of M,
the map πD→M is well-defined and bijective. Similarly, for every d-simplex σ ∈ K, the
map πconv σ→M is well-defined and bijective. We now introduce the map ϕ : K → D
defined by ϕ = [πD→M]−1 ◦ πM and let f : D → R+ be the map defined by:

f(x) = min
σ

(
−Powerσ([πconv σ→M]−1 ◦ πM(x))

)
, (15)
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where the minimum is taken over all d-simplices σ ∈ K such that x ∈ ϕ(conv σ).
Note that f(x) can be defined equivalently as the minimum of −Powerβ(y) over all
d-simplices β ∈ K and all points y ∈ conv β such that πM(x) = πM(y). Given a
d-simplex σ ∈ K, we associate to σ the weight:

Wmin(σ) =

∫
x∈ϕ(conv σ)

f(x) dx. (16)

Lemma 15 Under the assumptions of Theorem 7:

• For every d-simplex α ∈ D and every point x ∈ convα, we have f(x) = −Powerα(x).

• For every d-simplex α ∈ D, we have Wmin(α) = W (α).

Proof Consider a d-simplex α ∈ D, a d-simplex β ∈ K, x ∈ convα and y ∈ conv β such that
πM(x) = πM(y). Applying Lemma 11, we obtain that Powerβ(y) ≤ Powerα(x) or equiv-

alently Powerβ([πconv β→M]−1 ◦ πM(x)) ≤ Powerα(x) and therefore f(x) = −Powerα(x).
To establish the second item of the lemma, notice that for all α ∈ D, the restriction of ϕ
to convα is the identity function, ϕ| convα = Id and therefore ϕ(convα) = convα. Since we
have just established that f(x) = −Powerα(x), we get that

Wmin(α) =

∫
x∈ϕ(convα)

f(x) dx =

∫
x∈convα

−Powerα(x) dx = ω(α) = W (α),

which concludes the proof. �

Lemma 16 Under the assumptions of Theorem 7, for every d-simplex β ∈ K \D, we have
Wmin(β) < W (β).

Proof We need some notation. Given α and β in K, we write conv|α β for the set of points
y ∈ conv β for which there exists a point x ∈ convα such that πM(x) = πM(y). We define
the map ϕβ→α : conv|α β → conv|β α as ϕβ→α(y) = [πconvα→M]−1 ◦ πconv β→M(y). Note
that ϕβ→α is invertible and its inverse is ϕα→β . Also, note that J in Theorem 7 has been
chosen precisely so that one can apply Lemma ?? in [33, Appendix E] and guarantee that
| det(Dϕβ→α)(y)| ∈ [ 1

1+J , 1 + J ] for all α, β ∈ K and all y ∈ conv|α β. Consider a d-simplex
β ∈ K \D. By Lemma 15, f(x) = −Powerα(x) and therefore:

Wmin(β) =
∑

α∈D[d]

∫
x∈conv|β α

−Powerα(x) dx.

For any convex combination y of points in β, let {λβb (y)}b∈β designate the family of non-

negative real numbers summing up to 1 such that y =
∑
b∈β λ

β
b (y)b. Plugging in the upper

bound on −Powerα(x) provided by Lemma 11, letting

c =
1

2

(
p2 + ps

)
,

and making the change of variable x = ϕβ→α(y), we upper bound Wmin(β) as follows:

Wmin(β) ≤
∑

α∈D[d]

∫
x∈conv|β α

−Powerβ(ϕα→β(x))− c
∑
b∈β\α

λbβ(ϕα→β(x))

 dx
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=
∑

α∈D[d]

∫
y∈conv|α β

−Powerβ(y)− c
∑
b∈β\α

λbβ(y)

 | det(Dϕβ→α)(y)| dy

≤ (1 + J)W (β)− (1 + J)−1c
∑

α∈D[d]

∫
y∈conv|α β

∑
b∈β\α

λbβ(y) dy.

A key observation is that, because β 6= α, then β \ α 6= ∅. Therefore the sum
∑
b∈β\α λ

b
β(y)

does not vanish and is always lower bounded by infb∈β λ
b
β(y). Associating the quantity

Ω(β) =

∫
y∈conv β

inf
b∈β

λbβ(y) dy,

to β we thus obtain that Wmin(β) ≤ (1+J)W (β)−(1 + J)−1 cΩ(β). Hence, Wmin(β) < W (β)
as long as

JW (β) < (1 + J)−1cΩ(β). (17)

Using a change of variable, it is not too difficult to show that Ω(β) = d! vol(β)Ω(∆d), where

∆d = {λ ∈ Rd |
∑d
i=1 λi ≤ 1;λi ≥ 0, i = 1, 2, . . . , d} represents the standard d-simplex.

Remark that Ω(∆d) is a constant that depends only upon the dimension d and is thus
universal. Plugging in Ω(β) = d! vol(β)Ω(∆d) on the right side of (17), and the expression of
W (β) = ω(β) given by Lemma 5 on the left side of (17), and recalling that β is ρ-small, we
find that condition (17) is implied by the following condition:

Jρ2 < (1 + J)−1 (d+ 2)(d− 1)!

4

(
p2 + ps

)
Ω(∆d),

which we have assumed to hold. �

Proof of Theorem 7 Let D = Dellocd(P, ρ), D = |D| and K = |K|. Theorem 10 ensures that
D is a d-manifold and πM : D →M is a homeomorphism. Give to D an orientation that is
consistent with that ofM, that is, signD(σ) = signM(σ) for all σ ∈ K[d]. Define ϕ : K → D,
f : D → R+, W , and Wmin as explained at the beginning of the section. Consider the d-chain
γmin on K:

γmin(σ) =

{
signM(σ) if Wmin(σ) = W (σ),

0 otherwise.

By Lemma 15 and Lemma 16, the following property holds: for all σ ∈ K, Wmin(σ) = W (σ)
if and only if σ is a d-simplex of D. It follows that γmin = codeD. Furthermore, we have∑
σ∈K[d] γmin(σ) signM(σ)1ϕ(conv σ)(x) =

∑
σ∈D[d] 1conv σ(x) = 1 for almost all x ∈ D.

Recalling that W = ω and therefore ‖γ‖1,W = Edel(γ), and applying Lemma 8, we deduce
that γmin = codeD is the unique solution to the following optimization problem over the set
of chains in Cd(K,R):

minimize
γ

Edel(γ)

subject to
∑

σ∈K[d]

γ(σ) signM(σ)1ϕ(conv σ)(x) = 1, for almost all x ∈ D (~)

We now claim that the feasible set of Problem (~) contains the feasible set of Problem (?).
Indeed, consider a d-chain γ that satisfies the constaints of Problem (?), that is, such that{

∂γ = 0,∑
σ∈K[d] γ(σ) signM(σ)1πM(conv σ)(m0) = 1.
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Then, by Lemma 33 in [33, Appendix G], we obtain that γ also satisfies the following
constraint: ∑

σ∈K[d]

γ(σ) signM(σ)1πM(conv σ)(m) = 1, for almost all m ∈M,

which is equivalent to the constaint of Problem (~). Since the unique solution to Problem (~)
is codeD, Theorem 10 guarantees that D = Dellocd(P, ρ) is a faithful reconstruction of M.
By Lemma 6, codeD is thus a cycle. Hence, the unique solution codeD to Problem (~) also
satisfies the containts of Problem (?) and, because the feasible set of Problem (~) contains
the feasible set of Problem (?), codeD is also the unique solution to Problem (?). �

7 Practical aspects

In this section, we discuss practical aspects.

7.1 Transforming the problem into a realistic algorithm

Besides the complex K that one can build from P , Problem (?) seems to require the
knowledge of M for expressing the normalization constraint loadm0,M(γ) = 1. What
we call a realistic algorithm is an algorithm that takes only the point set P as input. In
this section, we explain how to transform Problem (?) into an equivalent problem that
does not refer toM anymore, thus providing a realistic algorithm. Roughly, we simply
replace the constraint loadm0,M(γ) = 1 by a constraint of the form loadx0,Π,Σ(γ) = 1,
where x0 is a point “close” to M, Π is a d-flat that “roughly approximates” M near
x0 and Σ are simplices of K “close” to x0. To make this idea precise, we use the
following localized version of the load:

loadx0,Π,Σ(γ) =
∑
σ∈Σ[d]

γ(σ) signΠ(σ)1πΠ(conv σ)(x0)

and state conditions in Lemma 17 (see below) under which Problem (?) is equivalent to
the problem obtained by replacing the constraint loadm0,M(γ) = 1 with the constraint
loadx0,Π,Σ(γ) = 1. Given a point x ∈ RN and r ≥ 0, let us introduce the subset of K:

K[x, r] = {σ ∈ K | conv σ ∩B(x, r) 6= ∅}.

Note that K[x, r] is not necessarily a simplicial complex.

Lemma 17 Suppose 0 ≤ ρ ≤ R25 . Consider a point x0 ∈ M⊕ρ and a d-dimensional affine
space Π passing through x0. Suppose that ∠(Π,TπM(x0)M) ≤ π

8 and that the orientation
of Π is consistent with that of TπM(x0)M. Then, Problem (?) is equivalent to the following
problem

minimize
γ

Edel(γ)

subject to ∂γ = 0, (??)

loadx0,Π,K[x0,4ρ](γ) = 1
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Proof This is a direct consequence of Lemma 34 in [33, Appendix G]. �

Observe that the conditions on the d-flat Π in the above lemma are rather mild.
Indeed, we only require Π to pass through a point x0 such that d(x0,M) ≤ R

25
and ∠(Π,TπM(x0)M) ≤ π

8 . Hence, Π only needs to be what we could call a rough
approximation of M near x0. In practice, we may take for x0 any point p0 ∈ P
and for Π the d-dimensional affine space Tp0(P, ρ) passing through p0 and parallel
to the d-dimensional vector space Vp0(P, ρ) defined as follows: Vp0(P, ρ) is spanned
by the eigenvectors associated to the d largest eigenvalues of the inertia tensor of
(P ∩B(p0, ρ))− c, where c is the center of mass of P ∩B(p0, ρ). By Lemma 35 in [33,
Appendix H], for ρ

R small enough and ε < ρ
16 , we have

∠(Tp0(P, ρ), TπM(p0)M) ≤ π

8
.

See Appendix H in [33] for more details. Hence, the assumptions of the above lemma
hold for x0 = p0 and Π = Tp0(P, ρ). This shows that the normalization constraint in
Problem (?) can be replaced by a constraint whose definition depends only upon the
point set P , thus providing a realistic algorithm.

7.2 Perturbing the data set for ensuring the safety conditions

In this section, we assume that P0 is a δ0-accurate ε0-dense sample ofM and perturbe
it to obtain a point set P that satisfies the assumptions of our main theorem. For
this, we use the Moser Tardos Algorithm [35] as a perturbation scheme in the spirit
of what is done in [16, Section 5.3.4].

The perturbation scheme is parametrized with real numbers ρ ≥ 0, rpert. ≥ 0,
Heightmin > 0, and Protmin > 0. To describe it, we need some notations and termi-
nology. Let T ∗p0

= Tp0(P0, 3ρ) be the d-dimensional affine space passing through p0

and parallel to the d-dimensional vector space Vp0(P0, 3ρ). To each point p0 ∈ P0, we
associate a perturbed point p ∈ P , computed by applying a sequence of elementary
operations called reset. Precisely, given a point p ∈ P associated to the point p0 ∈ P0,
the reset of p is the operation that consists in drawing a point q uniformely at random
in T ∗p0

∩ B(p0, rpert.) and assigning q to p. Finally, we call any of the two situations
below a bad event:

Violation of the height condition: There exists a ρ-small d-simplex σ ⊆ P such that
height(σ) < Heightmin;

Violation of the protection condition: There exists a pair (p, σ) made of a point p ∈
P and a d-simplex σ ⊆ P \ {p} such that p ∈ B(cσ, 3ρ) and protection(σ, {p}) ≤
Protmin.

In both situations, we associate to the bad event E a set of points called the points
correlated to E. In the first situation, the points correlated to E are the d+ 1 vertices
of σ and in the second situation, they are the d+ 2 points of {p} ∪ σ.
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Moser-Tardos Algorithm:
1. For each p0 ∈ P0, compute the d-dimensional affine space T ∗p0

2. For each point p ∈ P, reset p
3. WHILE (some bad event E occurs):

--------------- For each point p correlated to E, reset p
----- END WHILE

4. Return P

Roughly speaking, in our context, the Moser Tardos Algorithm reassigns new coor-
dinates to any point p ∈ P that is correlated to a bad event as long as a bad event
occurs. A beautiful result from [35] tells us that if bad events are mostly independent
from one another and have each a sufficiently small probability to occur, then the
Moser-Tardos Algorithm terminates and does so in a number of steps that is expected
to be linear in the size of P0. Precisely, suppose that each bad event is independent
of all but at most Γ of the other bad events and the probability of a bad event is at
most $. Then, the result in [35] tells us that the Moser-Tardos algorithm terminates
with expected time O(]P0) whenever

$ ≤ 1

e(Γ + 1)
, (18)

where e is the base of natural logarithms. Using this result, one can establish the
following lemma, the proof of which is beyond the scope of this paper:

Lemma 18 Let ε0 ≥ 0, η0 > 0, and ρ = Csteε0, where Cste ≥ 32. Let δ0 = ρ2

R , rpert. = η0ε0
20 ,

ε = 21
20ε0, and δ = 2δ0. There are positive constants c0, c1, and c2 that depend only upon

η0, Cste, and d such that if ρ
R < c0 then, given a point set P0 such that M ⊆ (P0)⊕ε0 ,

P0 ⊆ M⊕δ0 , and separation(P0) > η0ε0, the point set P obtained after resetting each of its
points satisfies M⊆ P⊕ε, P ⊆M⊕δ, and separation(P ) > 9

10η0ε0. Moreover, whenever we

apply the Moser-Tardos Algorithm with Heightmin = c1
( ρ
R
) 1

3 ρ and Protmin = c2
( ρ
R
) 1

3 ρ, the
algorithm terminates with expected time O(]P0) and returns a point set P that is a δ-accurate
ε-dense sample of M and that satisfies the assumptions of Theorem 7.

We only sketch the proof of Lemma 18 below.

Sketch of proof The proof consists in applying the Moser Tardos theorem [35]. In other words,
we show that Condition (18) holds, for a well-chosen upper bound $ on the probability of
each bad event and a well-chosen upper bound Γ on the number of bad events to which each
bad event is dependent upon. Upper bounds $ and Γ are obtained by adapting the proof
of a similar simpler result presented in the appendix of [1]. The intuition is that thanks to
Lemma 35 in [33, Appendix H], one can compute from the sample P0 a local approximation
Tp0(P0, 3ρ) of a local tangent space with accuracyO

( ρ
R
)
. It follows that, if ρ

R is small enough,
the volume, in Πp0∈P0

Tp0(P0, 3ρ), for which a height or protection condition is violated,
can be made arbitrary small, and Condition (18) required for Moser-Tardos algorithm to
terminate will be met.
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When the Moser-Tardos algorithm terminates, we thus have two positive constants c1
and c2 such that

height(P, ρ) > c1

( ρ
R

) 1
3
ρ, (19)

protection(P, 3ρ) > c2

( ρ
R

) 1
3
ρ. (20)

For short, write

p = protection(P, 3ρ),

s = separation(P ),

Θ = angularDeviationM(P, ρ).

Let us check that the safety assumptions of Theorem 7 are then satisfied. For this, we need
to show that one can find θ ∈

[
0, π6

]
such that:

Θ ≤ θ

2
− arcsin

(
ρ+ δ

R

)
, (21)

s > 8(δθ + ρθ2) + 6δ +
2ρ2

R , (22)

p > 8(δθ + ρθ2)

(
1 +

4dε

height(P, ρ)

)
, (23)

p2 + ps > max

{
10ρΘ(ε+ ρΘ),

4J(1 + J)

(d+ 2)(d− 1)! Ω(∆d)
ρ2
}
, (24)

where

J =
(R+ ρ)d

(R− ρ)d (cos Θ)min{d,N−d} − 1.

By Lemma 28 in [33, Appendix 33], we obtain that

Θ ≤ arcsin

(
2d

height(P, ρ)

(
3ρ2

R + δ

))
.

Hence, since there exists a positive constant c1 such that height(P, ρ) > c1
( ρ
R
) 1

3 ρ, we deduce
that there exists a positive constant c3 such that for ρ

R small enough we have

Θ ≤ c3
( ρ
R

) 2
3
.

Let θ = 3Θ and observe that for ρ
R small enough, θ ∈

[
0, π6

]
. With this choice of θ and using

s > η0

Cste
ρ, p > c2

( ρ
R
) 1

3 ρ, ε = 21
20Cste

ρ, δ = 2ρ2

R , and height(P, ρ) > c1
( ρ
R
) 1

3 ρ, it is easy to

check that for ρ
R small enough, Inequalities (21), (22), (23), and (24) hold and therefore the

safety assumptions of Theorem 7 are met. �

8 Conclusion

We have shown that the submanifold reconstruction problem can be recast as a
weighted `1-norm minimization problem under linear constraints and as such is
solvable by linear programming.

In the future, it would be interesting to study variants of this minimization prob-
lem. For instance, one could imagine constraining the solution to be a homology
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representative d-cycle (instead of a normalized d-cycle). Indeed, whenM is orientable
and connected, its d-homology group with real coefficients is one-dimensional, and
the homology class of a normalized generator of it is called the manifold fundamen-
tal class. Furthermore, it is known that if K is either the Čech complex of P or the
Vietoris-Rips complex of P , then K andM are homotopy equivalent, assuming that P
samples sufficiently densely and accurately the manifoldM and for a careful choice of
the scale parameter of these complexes [37–41]. Hence, it follows that the d-homology
group of K is also one-dimensional. One representative of a generator of the funda-
mental class of M can then be obtained, up to a multiplicative constant, by taking
any non-boundary d-cycle γ0 of K (performing for this standard linear algebra oper-
ations on the boundary operators ∂d and ∂d+1 of K). Thus, a variant to our problem
can be expressed as follows: among all the d-chains of K homologous to γ0, search for
the one with smallest Delaunay energy. We believe that it would be possible to adapt
the proof presented in the paper and establish conditions under which the solution to
this variant is also a d-chain which carries a triangulation of M (namely, the Delloc
complex of P ).
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[24] Jordan, C.: Essai sur la géométrie à n dimensions. Bulletin de la Société
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A A linear programming formulation

For the sake of completeness, we recall in this appendix how minimizing a weighted
`1-norm under linear constraints can be expressed as a linear programming problem
through slack variables. Consider the following minimization problem:

minimize
∑
i

ωi|xi|

subject to Ax = b.

Here x ∈ Rn is the variable, and ω1, ω2, . . . , ωn ∈ R, A ∈ Rk×n, b ∈ Rk are parameters.
This problem is equivalent to the linear programming problem:

minimize
∑
i

ωisi

subject to Ax = b,

xi ≤ si, i = 1, . . . , n,

xi ≥ −si, i = 1, . . . , n,

where the variables are x ∈ Rn and s ∈ Rn. Each si is called a slack variable.
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