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Abstract

Restricted Voronoi diagrams are a fundamental geometric structure used in many applications such as surface reconstruction
from point sets or optimal transport. Given a set of sites V = {vk}n

k=1 ⊂ Rd and a mesh X with vertices in Rd connected by
triangles, the restricted Voronoi diagram partitions X by computing for each site the portion of X for which the site is the
nearest. The restricted Voronoi diagram is the intersection between the regular Voronoi diagram and the mesh. Depending on
the site distribution or the ambient space dimension computing the regular Voronoi diagram may not be feasible using classical
algorithms. In this paper, we extend Lévy and Bonneel’s approach [LB12] based on nearest neighbor queries. We show that
their method is limited when the sites are not located on X. We propose a new algorithm for computing restricted Voronoi which
reduces the number of sites considered for each triangle of the mesh and scales smoothly when the sites are far from the surface.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Voronoi diagrams are fundamental tools used in many applications.
A Voronoi diagram is a decomposition of space induced by a fi-
nite set of points called sites. Each cell in the decomposition corre-
sponds to one site, and consists of all the points in space closer to
that site than to any other sites. In many practical situation, we only
need to decompose a domain, not the whole space. In other words,
for each cell in the Voronoi diagram, we are only interested in the
intersection of that cell with the domain. The collection of all the
non-empty intersections form the Voronoi diagram restricted to the
domain. Our goal in this paper is to provide an efficient algorithm
for computing restricted Voronoi diagrams when domains are finite
unions of triangles, for instance triangulated surfaces. We put no
restrictions on the dimension of the ambient space.

1.1. Contribution

Restricted Voronoi diagrams have already been studied and algo-
rithms exist to compute them. Our algorithm outperforms state of
the art methods when:

• sites are not distributed on the domain;
• many sites do not contribute to the restricted Voronoi diagram;
• the embedding dimension is higher than 3;
• the number of vertices in the Voronoi diagram is much bigger

than the number of vertices in the restricted Voronoi diagram;
see Figure 1 for an example.

Figure 1 depicts a case that is pathological for all previous meth-
ods but ours. In this case, sites are not located on the domain, the

Figure 1: Pathological configuration for state of the art methods.
Sites are distributed on axis aligned lines far from the domain (top
left) which makes the full diagram complex. On a 6D (x,y,z,r,g,b)
scene with 2M faces and using 100k sites on 20 lines (bottom) we
compute the restricted diagram in 43s while other methods cannot
compute it in a reasonable time. Note how regions with different
input colors (middle top) are clipped by different sites (top right).
Agent 327 scene courtesy of Francesco Siddi, Blender Cloud.
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number of vertices in the Voronoi diagram is quadratic, whereas the
number of vertices in the restricted Voronoi diagram is only linear.
In this paper, we focus on domains that are finite unions of trian-
gles, typically triangulated surfaces. However, it should be notice
that our approach generalizes to higher-dimensional domains, that
is, finite unions of k-dimensional simplices for k ≥ 2, but at the
price of computing k-dimensional weighted Voronoi diagrams.

1.2. Application

The main application we target is the computation of an optimal
transport map between two surfaces. Using a semi-discrete setting,
one may assume that one of the surface, say A, has been sampled
by a finite set of sites, and the second surface, say B, is repre-
sented by a triangulation. One way to transport surface A onto sur-
face B consists in computing the Voronoi diagram of the sites that
sample A restricted to the triangulation of B and sending each re-
stricted Voronoi cell onto its associated site. This gives a transport
map. To get the optimal one, we associate each site with a weight
and adjust weights iteratively, minimizing an objective function;
see [Mér11,Lév15] for the details. Computing an optimal transport
thus requires the computation of many weighted restricted Voronoi
diagrams. Notice that, for this particular application, sites do not lie
necessarily on the domain. This is especially true when weights in-
crease. Furthermore, every site contributes to the diagram and it is
not possible to gain performance by ignoring some of them. Unlike
existing methods, our method behaves well in this situation.

Optimal transport maps are useful for establishing correspon-
dences between surfaces. Such correspondences are needed in
many applications (registration, fitting or interpolation). Assuming
the cost of moving point a to point b is ‖a−b‖p, the cost of an op-
timal transport map is a distance called the Wasserstein distance of
order p. Such a distance can be used to evaluate methods that mod-
ify meshes (remeshing, simplification or compression), by giving a
measure of the difference between input and output. Optimal trans-
port algorithms and the related Wasserstein distance are currently
gaining popularity due to recent advances making the computation
of optimal transport maps tractable [FCRT14, SdGP∗15, BPC16].
Our contribution is one more step in making such computations
affordable.

1.3. Method

Our algorithm is based on nearest neighbor queries. Such an ap-
proach has already been used successfully to accelerate Voronoi
diagram computations [LB12, Ryc09]. Data structures exist to
perform these queries efficiently even for high dimensional data
[FLA15, MA97], using hierarchical space partitioning. To ensure
that the final restricted Voronoi diagram is computed correctly, the
centers of the nearest neighbor queries have to be carefully cho-
sen, along with a criterion ensuring that sufficient information was
gathered to validate the computed Voronoi cells. We improve the
existing methods by changing the location of the queries and the
validation criterion.

=

=

(a) classical : Vor(V) (b) restricted : Rvd(V,X)

Figure 2: Voronoi diagrams for a set of sites V = {vk}n
k=1

2. Background

2.1. Voronoi diagrams

Given a set of sites, V = {vk}n
k=1 ⊂ Rd , the Voronoi cell of site

vk ∈ V is defined as:

Vor(vk,V) =
{

x ∈ Rd ,‖vk−x‖ ≤ ‖v`−x‖ for all ` 6= k
}
.

The Voronoi neighbors of site vk are defined as the sites v` ∈V such
that Vor(v`,V)∩Vor(vk,V) 6= ∅. Given a pair of sites (vk,v`)∈V2,
the set of x∈Rd such that ‖vk−x‖= ‖v`−x‖ is called the bisector
of vk and v`. The bisector bounds two half spaces. Let Hk,l be the
one that contains vk and excludes v`. It is not difficult to see that
the Voronoi cell Vor(vk,V) is the intersection of all half spaces Hk,l
defined by bisectors between site vk and its Voronoi neighbors v`.
The Voronoi diagram Vor(V) is the collection of all Voronoi cells,
Vor(V) =

{
Vor(v,V),∀v ∈ V

}
(see Figure 2a).

Voronoi diagrams and their dual, Delaunay complexes have been
studied a lot [OBSS00] and robust algorithms exist for their compu-
tation [CGA16, BDH96, She96]. State of the art algorithms gener-
ally implement an incremental construction of the Delaunay com-
plex: the sites are inserted one by one, checking for the validity of
the existing simplices, and remeshing the area covered by invalid
simplices. When the set of sites is known in advance, the inser-
tion order is generally optimized using spatial sorting techniques
to improve data locality [ACR03]. These algorithms perform very
well in two or three dimensions. But, as the dimension of the ambi-
ent space increases, it is well-known that the size of the Delaunay
complex explodes [McM70] in the worst-case. These worst-cases
are however unlikely, and the major problem with the dimension
is usually the storage and traversal of the Delaunay complex itself.
Algorithms exist to compute Delaunay complexes in arbitrary di-
mension [BDH09,CGA16], which only store the Delaunay graph of
the sites. This approach remains viable in medium dimensions, but
does not scale very well for higher dimensions. Another approach
is that of Rycroft [Ryc09], who uses nearest neighbor queries to
compute Voronoi cells one by one. Nearest neighbor queries stay
efficient even for high dimensions.
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2.2. Restricted Voronoi diagrams

Given a domain X⊆Rd , the restricted Voronoi cell of vk is defined
as the intersection:

Vor(vk,V)∩X =
{

x ∈ X,‖vk−x‖ ≤ ‖v`−x‖ for all ` 6= k
}

By definition Vor(vk,V)∩X ⊂ Vor(vk,V). The restricted Voronoi
diagram of V to the domain X is the set of all the non-empty re-
stricted cells :

Rvd(V,X) =
{

Vor(v,V)∩X,∀v ∈ V,Vor(v,V)∩X 6= ∅
}

For the computation of restricted Voronoi diagrams, we are
not interested in the whole diagram. Computing the full dia-
gram is therefore a waste of time, in particular when the dimen-
sion of the restricting domain is lower than that of the ambient
space, and small. The idea is not new and was already applied
to large datasets [DGH01]. Efficient restricted Voronoi diagram
algorithms mainly emerged for applications in surface remeshing
[YLL∗09,YWLL13]. First algorithms were computing the full De-
launay skeleton and using it to clip the domain by the Voronoi
cells. Such approaches do not scale to higher dimensions since
the cost of computing the Delaunay complex becomes prohibitive.
For anisotropic remeshing purposes and optimal transport, Lévy
and Bonneel [LB12, Lév15] therefore developed a new algorithm
based on nearest neighbor queries with a criterion similar to that
of [Ryc09] to ensure that the final diagram is correct. For remesh-
ing purposes, the sites are usually located on the surface to be
remeshed. As we will show in § 2.3.2.3, when this hypothesis is
no longer valid and the sites may contribute to the restricted dia-
gram while being far from the surface, this approach can degener-
ate and use lots of sites for each Voronoi cell. Such a situation is
not an abstract pathological case. Restricted Voronoi diagrams are
for instance used to compute distances between surfaces [NYL14]
or semi-discrete optimal transport [Mér11]. In such cases, the sites
are located on another surface, and can therefore be far away.

2.3. Algorithms

2.3.1. Classical algorithm

2.3.1.1. Principle The straightforward way to compute a re-
stricted Voronoi diagram Rvd(V,X) is by computing the Voronoi
diagram Vor(V) in the ambient space and then computing its inter-
section with X. When X is a finite union of triangles, this means
partitioning every triangle T in the union using the Voronoi cells.
Given a site, its restricted Voronoi cell is computed by clipping the
domain X using the Voronoi neighbors of the site. This approach
has been used for remeshing purposes [YLL∗09], where the restric-
tion domain X is the remeshed mesh. In this context, for a triangle
T ⊂ X, the intersection is computed using reentrant polygon clip-
ping [SH74]. Once Vor(vk,V)∩T is computed, the computation is
propagated using its boundary :

• an intersection between T and the bisector of (vk,v`) triggers the
computation of Vor(v`,V)∩T ;
• a piece of an edge between T and another triangle T′ triggers the

computation of Vor(vk,V)∩T′.

For every connected component of X, the propagation is initiated
using a nearest neighbor query from a triangle.

Figure 3: Contributing sites: sites in white cells are sites that con-
tribute to the Voronoi diagram restricted to the target region (the
solid black line).

2.3.1.2. Limitations This method is relevant in low dimensions
since there exists very efficient algorithms to compute Voronoi di-
agrams in 2D and 3D [CGA16, BDH96, She96]. When only a few
sites contribute to the restricted diagram (see Figure 3) or when
the complexity of the full diagram is pathological in areas useless
for the restricted diagram (see Figure 1), we shall see that nearest
neighbor algorithms may be faster.

2.3.2. Nearest neighbor algorithms

2.3.2.1. Principle Because of the above limitations (§ 2.3.1.2),
Lévy and Bonneel [LB12] developed a new algorithm for comput-
ing restricted Voronoi diagrams using nearest neighbor requests.
The idea is to replace the Voronoi neighbors with the sites nearest
to the site vk.

Efficient data structures based on Kd-trees have been developed
[MA97, FLA15] to provide these nearest neighbors even if the di-
mension is high. Classical applications for high dimensional re-
quests are for instance computer vision or machine learning where
the query points are feature sets. The space complexity of such data
structures grows linearly with the number of points and the dimen-
sion, and is therefore much better than storing a full Delaunay com-
plex.

For restricted Voronoi diagrams, using too many sites for the
clipping is not a problem: some bisectors may not contribute to the
final restricted Voronoi cell, but the result is the same. The problem
is therefore to ensure that sufficient sites have been considered.

2.3.2.2. Security radius The security radius is a technique used
by both [Ryc09] and [LB12] to ensure that sufficient sites have been
used. It works as follows: given a site vk, a triangle T and a can-
didate polygon P ⊂ T for the restricted cell Vor(vk,V)∩T, let us
consider a minimal ball centered on vk and containing P. Let r be
the radius of this ball. Since the ball is centered on vk, if another
site v` is further from vk than 2r, then the bisector of (vk,v`) cannot
clip the ball, and therefore P.

When using nearest neighbor queries, one can check whether
the furthest site considered is further from vk than 2r or not. If
so, every other unconsidered site is further as well and therefore
P = Vor(vk,V)∩T is valid. If not, additional nearest neighbors are
requested until the condition is fulfilled.
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(a) usual case (b) pathological case

Figure 4: Limitations of the security radius approach: when the
sites are far from the surface, the radius increases and may force
the algorithm to consider every site in the computation of every
restricted Voronoi cell.

2.3.2.3. Limitations The above method works very well for sites
located on the triangle T. In such a situation, the ball radius is small,
and few sites are considered. However, whenever a site contributes
to the partitioning of a triangle while being far away from that tri-
angle, the radius of the ball grows, and so does the number of sites
considered. In a worst case scenario, the loop asking for additional
sites goes on until every other site has been considered (see Fig-
ure 4).

2.3.2.4. Discussion For the above criterion to hold, the nearest
neighbor requests need to be exact. Data structures for such re-
quests are generally not implemented using exact predicates, and
are usually much more efficient when a small tolerance is allowed.
Algorithms based on the security radius therefore do not fully ben-
efit from their efficiency. This is a limitation our method shares.

3. Contribution

3.1. Idea

We define a new criterion guaranteeing a correct diagram while
limiting the number of sites to consider. Our algorithm is based on
that of Lévy and Bonneel [LB12] summarized in § 2.3.2.2. Simi-
larly, it relies on nearest neighbor queries. However, those queries
are centered on the triangle T rather than the site vk. Therefore, by
definition of the Voronoi diagram, the result of a query performed
from T is a site whose Voronoi cell intersects the triangle. We there-
fore only consider sites that contribute to the restricted Voronoi di-
agram (see Figure 3).

3.2. Corner validation

Our construction of the restricted Voronoi diagram is an iterative
process. Every iteration introduces new sites into the restricted di-
agram. These site insertions generate new cells (and alter old ones)
that have to be validated. A validated cell is a cell that is final in the
restricted Voronoi diagram : it cannot be altered by the insertion of
new sites.

Our corner validation criterion validates the restricted cells us-
ing nearest neighbor queries centered on their corners. In the spe-
cific case of a diagram restricted to a triangle, a restricted cell is a

(a) diagram (b) witness set

Figure 5: On the left, a Voronoi diagram for a set of sites, and a
restriction set. On the right, the convex hulls of the restricted cells
(dotted lines) and the witness set (thick lines and black points).

polygon. The corners are the vertices of the polygon. The general
idea is that when a nearest neighbor query centered on the corner
returns a site already inserted, the corner is guaranteed to exist in
the final diagram. When all the corners of a restricted cell are valid,
the cell can no longer be altered and the restricted cell itself is valid.

3.2.1. Formulation

We provide here a general formulation and proof of our validity
criterion, not limited to restrictions to 2D triangulations. In such
a setting, the corners we mentioned can be expressed in terms of
extreme points.

Definition 1 (Extreme point) Let S ⊂ Rd be a convex set. An ex-
treme point of S is a point s ∈ S such that no segment entirely in S
contains s in its interior.

Now let Ex(S) denote the set of extreme points of a convex set
and Conv(S) denote the convex hull of a set S, and let us define the
notion of witness set for a restricted Voronoi diagram, named after
the work of De Silva [Sil08].

Definition 2 (Witness set) Let V ⊂ Rd be a set of sites and let
Vor(v,V) denote the Voronoi cell of a site v ∈ V. Given a set X ⊂
Rd , the witness set of V with respect to X is defined as

W(V,X) =
⋃

v∈V
{Ex(Conv(Vor(v,V)∩X))} .

This witness set is the set of corners we use to validate the re-
stricted Voronoi diagram. The following theorem states that check-
ing the nearest neighbors of the points of a witness set is sufficient
to validate a restricted Voronoi diagram.

Theorem 1 (Corner validation) Let V ⊂ Rd be a set of sites and
U⊂ V be a subset of the sites. Let X⊂ Rd be a compact set. If for
all w ∈W(U,X), w ∈ Vor(u,V) for some site u ∈ U then for all
u ∈ U, Vor(u,U)∩X = Vor(u,V)∩X.

Proof We will prove the result by mutual inclusion.
By definition of the Voronoi diagram we have that Vor(u,V) ⊂
Vor(u,U) since U is a subset of V. Therefore Vor(u,V) ∩X ⊂
Vor(u,U)∩X.
The convex hull of a set S is the union of all the convex combina-
tions of points in S. A point in Conv(S) that is not in S is therefore
a convex combination of two or more points in S and is therefore in
the interior of a segment contained in S. The extreme points of the
convex hull of S are therefore in S.
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For every extreme point w of Ex(Conv(Vor(u,U)∩X)), our hy-
pothesis state that there exists a site u′ ∈ U such that w ∈
Vor(u′,V). Since u′ ∈ U and w ∈ Vor(u,U), w is therefore
equidistant to u′ and u and w ∈ Vor(u,V). This leads to
Ex(Conv(Vor(u,U)∩X)) ⊂ Vor(u,V) and since Voronoi cells are
convex we finally have that

Conv(Ex(Conv(Vor(u,U)∩X)))⊂ Vor(u,V).

X is compact and Vor(u,U) is closed. Vor(u,U)∩X is therefore
compact, and as a corollary of Carathéodory’s Convexity Theorem
[AB06, Corollary 5.33] Conv(Vor(u,U)∩X) is compact as well.
Using the Krein-Millner Theorem, we obtain

Conv(Ex(Conv(Vor(u,U)∩X))) = Conv(Vor(u,U)∩X),

and therefore

Vor(u,U)∩X⊂ Conv(Vor(u,U)∩X)⊂ Vor(u,V).

Finally

Vor(u,U)∩X⊂ Vor(u,V)∩X.

3.2.2. Discussion

Voronoi diagrams are dual to Delaunay complexes. In such a com-
plex, the Voronoi sites are the vertices, and every simplex is such
that the interior of its circum-hypersphere contains no site. In terms
of nearest neighbors, this means that for every simplex, the near-
est neighbors of its circum-center are the vertices of the simplex.
These circum-centers are our Voronoi vertices.

In terms of construction, Delaunay complexes are generally built
by incrementally adding new vertices. Each vertex insertion yields
a conflict area where simplices are destroyed and rebuilt to inte-
grate the new vertex. This procedure is made efficient by using
spacial sorting algorithms. In contrast, our approach chooses the
vertices to add by checking for every simplex if at least one vertex
not currently in the complex is in conflict with the simplex. This
test is done using a nearest neighbor query. Our approach differs in
that for restricted Voronoi diagrams, all the sites do not necessarily
contribute to the diagram, and we only store restricted Delaunay
simplices to validate the corresponding corners for the restriction
domain. Another related incremental Delaunay construction algo-
rithm is Delaunay refinement [She02]. In such a context however,
sites are introduced in specific positions to improve the quality of
the Delaunay simplices, whereas in our case, our refinement crite-
rion is the validity of the diagram itself and we have no choice for
the position of the sites.

De Silva [Sil08] already formulated the Delaunay complex in
terms of nearest neighbors. In his formulation, our construction al-
gorithm is just an iterative process to discover strong witnesses for
every restricted Delaunay simplex.

3.3. Corner management

In the incremental construction, we need a data structure to manage
the set of corners, update it after site insertions and mark them as
valid. We do so using a power diagram of the dimension of X. In

our case, X is a collection of triangles and on each triangle, we use
a 2D power diagram in the support plane of the triangle.

3.3.1. Power diagram and regular triangulation

The power diagram is a generalization of the Voronoi diagram in
which, each site vk is given a weight wk. Voronoi diagrams are a
special case of power diagrams where all sites vk have a weight
wk = 0. The regular triangulation is the dual of the power diagram.

Definition 3 (Power cells) Let V = {vk}n
k=1 ⊂Rd be a set of sites.

Given a set of weights W = {wk}k for each site, let us define v̂k =
(vk,wk) a weighted site and V̂ = {v̂k}k the set of weighted sites.
The Power cell Pow(v̂k, V̂) of a weighted site is defined as:

Pow(v̂k, V̂) =
{

x ∈ Rd ,‖vk−x‖−wk ≤ ‖v`−x‖−w`,∀` 6= k
}

3.3.2. Support frame of a triangle

Given a triangle T of X with vertices x1,x2,x3 ∈ Rd , we can com-
pute a 2D orthonormal frame (e1,e2) centered on one of the ver-
tices of T (i.e. x1) as follows:

e1 =
x2−x1
‖x2−x1‖

e2 =
(x3−x1)− (x3−x1).e1
‖x3−x1)− (x3−x1).e1‖

Every point x ∈ Rd can be expressed as a combination of a tan-
gent component x� (included in the plane spanned by T) and a
normal component x⊥:

x = x� +x⊥

x� = [(x−x1).e1]e1 +[(x−x1).e2]e2

x⊥ = x−x�

With these notations, we can now provide the relation between a
power diagram and a restricted Voronoi diagram.

3.3.3. Expressing a restricted diagram as a power diagram

The Voronoi diagram of a set of sites V⊂ Rd restricted to a hyper-
plane is known [Aur87,AK96,CGA16] to be equivalent to a power
diagram in the hyperplane. This relation was extended by Boissonat
and Gosh [BG14, Lemma 2.2] to the following:

Proposition 1 Let X be an affine subspace of Rd of dimension a.
Let V = {vk}n

k=1 ⊂ Rd be a set of sites, V� = {v�
k }k their pro-

jections on X and V⊥ = {v⊥k }k their normal components. The
Voronoi diagram of V restricted to X is the power diagram of
V� = {v�

k }
n
k=1 in X with the weights W= {wk}n

k=1 = {−v⊥
2

k }
n
k=1.

The computation of a dD Voronoi diagram restricted to a 2D
plane can therefore be made through a power diagram on T using
V� as positions for the sites and weights derived from V⊥. Note
that we use a different power diagram on each triangle since the
tangent and normal components of the sites depend on the sup-
port frame of the triangle. The goal of our algorithm is therefore
to choose the sites to introduce in the diagram and determine when
sufficient sites have been considered for the restricted diagram to
be valid using our corner validation mechanism.
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Figure 6: Iterations of Algorithm 1
: a new corner
: a validated corner
: a site already found and inserted in the regular triangulation
: a site not found yet

At every iteration, every new corner ( ) is tested with a nearest
site request (represented by arrows). Dashed arrows mean that the
corner tested is equidistant to 2 sites and therefore a nearest site
request can return any of the two sites. New sites found this way are
inserted in the diagram, leading to the emergence of new corners to
test, until there is no more new sites to insert (#4).

3.4. Algorithm

Algorithm 1 and Figure 6 present our algorithm. The set of Voronoi
corners is initialized to the 3 vertices of T. At every iteration, we
check the nearest site of each new Voronoi corner (NN(x) in Al-
gorithm 1). All newfound sites are projected in the triangle frame
(Section 3.3.2) and inserted in the power diagram (PD) using their
weight wk = −v⊥

2

k (Proposition 1). Every insertion of a new site
in PD will cause the emergence of new corners to test. Every test
of a new corner will lead to either the validation of this corner (if
the nearest site has already been inserted in PD) or the discovery
of a new contributing site (that will be added to new_sites before
being inserted in PD). At every iteration, we solely extract the new
corners from the power diagram (Section 3.5). When all corners are
validated, no more site is to be inserted, and the restricted Voronoi
diagram of T is complete.

Since the Algorithm 1 works independently on each triangle,
the computation on every triangle T ∈ X can be parallelized, as
exposed in Algorithm 2. At the end of this algorithm, when all
Rvd(V,T) are computed, we gather them together in order to ob-
tain one final Voronoi diagram restricted to X.

Most of the time, a Voronoi corner is shared among 2 or 3 re-
stricted cells. This means that the Algorithm 1 would naïvely use
2 or 3 times the number of required nearest site requests. In Sec-
tion 3.5 we present some of our implementation details to handle
this issue.

Input: T : a triangle ∈ X
Data: new_sites: a table of untreated new sites

new_corners: a table of new Voronoi corners
PD: the power diagram

Result: Rvd(V,T) : the Voronoi diagram of X restricted to T
1 function compute_rvd(T)

/* Initialization */
2 compute tangent plane /* Section 3.3.2 */
3 foreach vertex xi of triangle T do
4 add NN(xi) to new_sites

5 while new_sites is not empty do
/* Insert contributing sites in

the power diagram */
6 foreach site in new_sites do
7 project site in tangent plane
8 add site to PD

9 extract new_corners
10 empty new_sites

/* Validate the corners, search
for new sites */

11 foreach xi in new_corners do
12 if NN(xi) is not already in PD then
13 add NN(xi) to new_sites

14 return PD ∩T

Algorithm 1: Compute Rvd(V,T) for a single triangle T

Input: X : a triangulated mesh
V : a set of sites

Result: Rvd(V,X) : the Voronoi diagram of V restricted to X
1 begin
2 forall triangle T ∈ X do in parallel
3 Rvd(V,T)← compute_rvd(T)
4 Rvd(V,X)← merge all Rvd(V,T) together

Algorithm 2: Compute Rvd(V,X)

3.5. Implementation

Regular triangulation using CGAL [CGA16] To compute the
2D power diagram on every triangle, we use a regular triangula-
tion structure from CGAL, configured using the Epic kernel. Given
a newly inserted site, the new corners due to the insertion are ob-
tained as the weighted circum-centers of the simplices sharing the
new site.

Nearest site requests using FLANN [FLA15] In Algorithm 1 we
use a lot of nearest site searches from new corners to find new sites
( ← NN( )). This is done using a global FLANN index, which is
thread-safe. Even though FLANN is designed for finding approxi-
mate nearest neighbors, it remains possible to ask for an exact re-
quest causing, however, a loss of efficiency.

Despite the fact that we are working in a local frame for each
triangle, a single global nearest neighbor structure is shared. This
global structure is built in Rd space and does not depend on any
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triangle. Therefore, when working on a triangle, making nearest
site requests from a Voronoi corner requires to previously express
it in Rd (change of basis). That way, the global structure is only
built once and can be queried from any triangle.

Avoiding infinite triangles in the regular triangulation Corners
can be vertices of the triangle, intersections between edges of the
triangles and bisectors, or restricted Voronoi vertices inside the tri-
angle. To ease the management of these corners, we compute the
diagram in two steps. First, we compute the diagram restricted to
the edges of the triangle. Then, we build the regular triangulations
from the resulting sites, and go on with the corner validation and
insertions. In the second step, since the Voronoi diagram is valid
on the edges, all the new restricted cells created will be entirely in
the triangle. We therefore only need to deal with corners inside the
triangle, and avoid handling infinite triangles in the regular triangu-
lation or intersections with the edges of the triangle.

Robustness We do not use exact predicates in our implementa-
tion. The first reason is that the nearest neighbor library we use
[FLA15] plays a central role in the algorithm, and does not use ex-
act predicates itself. Even if it did, compared to Lévy and Bonneel
[LB12], our nearest neighbor request centers are not the sites but
the Voronoi vertices and therefore the result of a calculation. This
makes exact nearest neighbor requests more difficult: we would re-
quire a predicate to determine among two sites the one nearest to
a corner, which depends on both sites and mesh vertices. Another
potential source of numerical errors is the projection we use before
inserting sites in the regular Delaunay triangulation. The regular tri-
angulation itself is robust since we rely on CGAL [CGA16] for this
part with Epic kernel. Since our final RVD is built from this trian-
gulation, we are sure that whatever degeneracy appears because of
the initial data or our computations, CGAL will handle it properly
and provide us with a coherent triangulation.

To validate our method experimentally, we compared the com-
binatorics of our result with that of Geogram [Lév16] with exact
predicates enabled. To do so, we distributed 2k sites on a sphere of
radius 1, and restricted the diagram to a sphere with identical center
and radius 1

2d with increasing d. In such a setup, nearest neighbor
queries become more and more subject to errors. Our computations
are performed using doubles, and CGAL Epic kernel. As shown on
Figure 7, our resulting diagram stays valid up to d = 43 meaning
an inner sphere of radius 2.10−13.

4. Application to Optimal transport

In 1781, Gaspard Monge [Mon81] described what will later be-
come the field of optimal transport. The problem was the follow-
ing : how to move a pile of sand into another while minimizing
the displacement cost c(x,y) of every sand particles from x to y.
Nowadays, it has been widely studied [Vil09] and used in many
applications such as image retrieval using the Earth Mover’s Dis-
tance (defined by optimal transport) [RTG00], histogram regres-
sion [BPC16] or shape interpolation [SdGP∗15].

We applied our algorithm to the problem of L2 semi-discrete op-
timal transport [Mér11]. Similarly, [Lév15] realize semi-discrete
optimal transport between tetrahedral meshes in 3D.
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Figure 7: Precision of our diagrams. 2k sites are distributed on
a sphere of radius 1, and the diagram is restricted to a sphere of
decreasing radius (abscissae). The curve shows the error in terms
of difference in the number of computed Voronoi faces w.r.t. the
reference computed with Geogram using exact predicates [Lév16].

(a) Initialization
Discrete source (blue, center)
Target (orange, left and right)

(b) Transport map
Result after #n iterations

Figure 8: First and last step of optimal transport computation. (a)
Sites are distributed on the source, each one is given a mass.

Semi discrete optimal transport Given two meshes A (the
source) and B (the target), we discretize the source (see Figure 8a)
by distributing a set of sites V over the mesh A. Sites can be dis-
tributed homogeneously using Lloyd relaxation [Llo82] or Newton-
type methods for faster convergence [LWL∗09]. Every site vk is as-
signed with a mass λk. In our specific case, the Dirac masses used
are the areas of the restricted Voronoi cells of the sites on mesh A.
The target mesh B has a measure µ with density. We aim to trans-
port the mass contained on sites to the target location on B. That is
to say, obtain a mapping between V and portions of B that is opti-
mal in terms of displacement cost while satisfying the constraints
(see Figure 8b).

It is known that any least squares assignment problem subject to
capacity constraints can be realized by a power diagram [AHA98,
Theorem 1]. Given a source discrete measure, supported on a set
of sites V = {vk}n

k=1 with masses ΛΛΛ = {λk}n
k=1, finding an opti-

mal transport map is finding the weight vector w = {wk}n
k=1 such

that the power cells Pow(v̂k, V̂)∩B respect the capacity constraints
given by ΛΛΛ. These weights are a global minimizer of the convex
function Φ(w) [Mér11].

Φ(w) = ∑
v̂k∈V̂

−λkwk−
∫

Pow(v̂k , V̂)∩B

(‖vk−x‖2−wk)dµ(x)
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Figure 9: Linear interpolation of the transport map obtained using optimal transport between 6D colored meshes. Right figure also depicts
some trajectories of this interpolation for some selected sites. Vincent model courtesy of Andy Goralczyk, Blender cloud.
Conditions : 15k sites distributed on a source mesh (left) and transported to a target mesh with 30k faces (right). Computation terminated
using 7079 iterations in 5h54min that is 1 iteration every 3 seconds.

The gradient of Φ(w) is as follows :

∂Φ

∂wk
(w) =

∫
Pow(v̂k , V̂)∩B

dµ(x)−λk

Implementation details Minimizing this convex function using
L-BFGS requires computing both the value of the function and
its gradient. In our runs, we used the same stopping condition
as [Mér11], namely ‖∇Φ(w)‖∞ ≤ 10−6.

The evaluation of Φ(w) requires the computation of the power
diagram which is equivalent to a restricted diagram (Proposition 1).
As for the gradient, it is a vector of the size of the number of sites.
For a given wk at iteration i, the value of the gradient is the differ-
ence between the area of the power cell restricted to target mesh B
and the area λk of the Voronoi cell restricted to source mesh A at it-
eration 0 (when weights were equals to 0). One can note that when
the areas of the restricted power cells on mesh B are equal to λk,
the gradient vanishes, the transportation is complete. The integral
part of Φ(w), can be computed as in [LL10, Equation 4].

Discussion Optimal transport requires to compute iteratively thou-
sands of restricted Voronoi diagrams before reaching an optimal set
of weights. Optimal transport is a typical case of failure for Security
Radius since a set of sites (and their associated mass) distributed on
mesh A needs to be used to compute a Voronoi diagram restricted
to a mesh B. Therefore, sites are likely to be far from the restricted
domain. Even in case of overlapping between A and B (limited dis-
tance between the sites and the target mesh B), the weights of the
power diagram add an additional dimension to the sites, increasing
all the distances. In optimal transport, sites will always lie far from
the surface. For those reasons, the Security radius algorithm is not
suitable for an optimal transport application. This is experimentally
confirmed in Table 1, which describes the timings for solving opti-
mal transport between two copies of the same mesh translated with
an offset going from full overlap to no intersection at all.

To achieve optimal transport in reasonable time [Mér11, Lév15]
used classical algorithm (Section 2.3.1). This approach is only ef-
ficient in 2D and 3D but blows in higher dimensions (Figure 10).
Using our algorithm as a replacement to compute power diagrams
makes it possible to realize optimal transport between featured

Target mesh offset 0 0.5 1
Security Radius 0,3s 2h 40m 3h 31m

Corner Validation (mono) 0,05s 37s 48s
Corner Validation (parallel) 0,04s 5,3s 7,7s

Table 1: Optimal transport between 2 identical meshes normalized
in [0,1] and translated between 0 and 1 using an offset.
Conditions : 1k sites generated on the surface of the mesh A of 3k
faces, transported to a copy of A translated by the offset.

meshes which neither Security radius nor classical algorithm can
do. In Figure 9 we present an optimal transport computation real-
ized in 6D between colored meshes (x,y,z,r,g,b). From the output of
the computation (the transport map), we realized a linear interpo-
lation between the initial position of sites and their corresponding
barycenters on the power cells restricted to B at last iteration. Look-
ing at the trajectories, one can notice the trade-off made between
mapping a similar color and the closest point in a 3D sense.

5. Results

Setup In this section, we present tests and particular configurations
with the relative performance of the algorithms used. We compare
our algorithm with 3 others, namely Security radius, GEOGRAM
[LB12] and DTdD (CGAL) [BDH09]. “Security radius” refers to
our implementation of the Lévy and Bonneel algorithm that they
implemented in GEOGRAM. We use our implementation of their
algorithm only for tests on high dimensional meshes to demonstrate
that the concept works well for high dimensions. Although, our
algorithm and GEOGRAM are parallel, we used a single-threaded
version of these algorithms to compare with the others. Our timings
are an average over 10 experiments for more stability. All tests are
ran on a 2×8 hyper-threaded cores architecture (two CPUs Xeon
E5-2640 v3 of 8 hyper-threaded cores each).

In Section 5.1 we illustrate the superiority of the nearest neigh-
bor approach when the dimension of the ambient space increases.
In Section 5.2 and 5.3 we show how our algorithm behaves accord-
ing to the distribution of the sites. In particular, we show that it
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Figure 10: Comparison of the behavior of the classical approach
2.3.1 (DTdD) and the nearest neighbors approach 2.3.2 (Security
radius and ours) when the dimension of the ambient space in-
creases.
Conditions : 3k sites generated on the surface of the dD meshes.
The dD meshes are randomly generated as a soup of 65 2-simplex
with vertices in [0,1]d . DTdD has only been ran until dimension 8
due to the large increase in execution time beyond.

remains efficient when the sites move away from the surface of the
mesh. Finally, in Section 5.4 we presents the performances of our
parallel implementation.

5.1. Sites and mesh in high dimension

In Figure 10 we present the evolution of the execution time when
increasing the dimension of the ambient space. Every triangle of
this dD mesh is a 2-simplex with vertices in Rd . The DTdD al-
gorithm [BDH09] (for Delaunay complexes in d-Dimensions) is
computed using CGAL. Computing DTdD is the mandatory first
step when using the classical approach 2.3.1. The execution time
of the computation of a d-dimensional restricted Voronoi diagram
using this approach can therefore only be higher because it requires
additional steps. This figure clearly shows that this approach is pro-
hibitive when dimensions get bigger.

5.2. Sites on the surface of the mesh and complexity

The bottom of the Figure 10 shows the same test as the above part
without the log scale in x and the DTdD execution time curve. This
bottom part is there to demonstrate the good behavior of the near-
est neighbor approach, and that our algorithm shows comparable
performance in the case when the sites are located on the surface.

5.3. Sites far from the surface of the mesh

The security radius used in Lévy and Bonneel [LB12] and Voro++
[Ryc09] algorithms degenerates when the sites are far from the sur-
face (§ 2.3.2.3). In Figure 11a, we illustrate this limitation. For that
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Figure 11: (a) Performances of our algorithm compared to GE-
OGRAM configured with security radius [LB12,Lév16]. Their per-
formance for sites far from the domain drops while our algorithm
scales smoothly (see § 2.3.2.3 and Section 5.3).
Conditions : (b) Restricted Voronoi diagram of a cube with sites
generated on an inner smaller cube.

0 4 8 12 16 20 24 28 32
Number of threads

2

4

6

8

10

12

Pe
rfo

rm
an

ce
s (

m
ul

tip
lie

r r
at

io
)

No action
Store action

Figure 12: Parallel performances of our algorithm versus the num-
ber of threads depending on the action.
Conditions : 100k sites generated on the surface of a 2k faces mesh.

we used a cube as input mesh and generated sites inside it on a
smaller cube (with a scale ratio of 0.25), see Figure 11b. We find
that the GEOGRAM algorithm is not designed for this type of use.
In contrast, our algorithm still behaves nicely.

5.4. Parallel performance

The Figure 12 shows the evolution of the performance according
to the number of threads used. The multiplier ratio is computed by
dividing the execution time at the current number of threads by the
execution time of the single thread run. We describe as action the
treatment(s) realized during the RVD computation with a portion
of restricted cell that has just been computed. The Store Action
reconstructs and reconnects the diagram cells. This action induces a
bottleneck due to concurrent writing, requiring a “one-thread-at-a-
time” merging. However, in other cases such as computing the area
and barycenter of the cells leads to a thread safe action, resulting in
much better performance. This is, for example, the case for optimal
transport [Mér11].

5.5. Influence of the site distribution

We used different methods for generating sites around a mesh. With
the same amount of 100k sites, and the same input mesh, depending
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on the sites distribution we can have different behaviors. In Table 2,
we present the execution time of three different random site distri-
butions :

Surface sites are generated on the surface of the input mesh
Uniform sites are generated in the bounding box of the input mesh
Lines sites are generated in the bounding box of the input mesh on

lines aligned on the 3D axis

This table also presents the number of nearest neighbor requests
that have been made and the number of polygons that have been
used for the restricted Voronoi diagram. The polygons does not ex-
actly correspond to the number of restricted cells since a restricted
cell is made of as many polygons as the triangles it intersects. Still,
this figure provides insight on the number of sites that contribute to
the diagram.

When sites are distributed on the surface the number of polygons
is almost equivalent to the number of sites since all sites contribute.
Considering the uniform site distribution, the number of sites con-
tributing to the diagram is much lower since all sites that are far
from the surface are hidden by closer ones. Obtaining the diagram
for this distribution is, therefore, faster. This table confirms the idea
illustrated in Figure 3 about the fact that our algorithm will only
consider sites that contribute to the diagrams.

Sites generation Surface Uniform Lines
Time 1395 ms 30 ms 6164 ms

# NN requests 344k 6.4k 73k
# Polygons 103k 1.9k 22k

Table 2: Sites generation methods influence for 100k sites

We already saw in Section 5.2 and 5.3 that our algorithm was
scaling nicely for case 1 and 2. However, generating sites on lines
could lead to pathological case where the complexity of the dia-
gram becomes quadratic in the number of sites. In such cases, we
find that our algorithm behaves well and manages to get the dia-
gram in a reasonable time.

6. Conclusion & Future work

We presented a new algorithm for computing Voronoi diagrams of
sites in Rd restricted to a 2D triangulated mesh. Compared to the
existing algorithms, ours shows comparable performance when the
others perform well. When the sites are far from the surface, the
state of the art algorithms become prohibitive while ours continues
to show good behavior. To do so, we derived a new search mech-
anism to find the set of sites contributing to the restricted Voronoi
diagram, along with a new criterion to ensure that the diagram we
computed is correct. We believe our corner validation criterion can
be easily integrated into existing software and could therefore ben-
efit to many applications, in particular for mesh generation and sur-
face reconstruction.

For future work, our algorithm could be improved in several
ways. First, in his work, de Silva [Sil08] studies the notion of ap-
proximated witnesses. A potential application in our case would
be to derive a new criterion based on approximate nearest neigh-
bors, thus improving the performance of the queries. We would

also like to build exact predicates to make our algorithm more ro-
bust to degenerate cases and provide guarantees of correctness of
the result. This could be possible using the Predicate Construction
Kit [Lév16]. Finally a more open problem would be to restrict the
diagram to a wider class of subsets. In particular, for surface re-
construction, such a set could be the α-offset of a point cloud or
cocones [ACDL00].
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