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Abstract

Given a point set that samples a shape, we formulate conditions under which
the Rips complex of the point set at some scale reflects the homotopy type
of the shape. For this, we associate with each compact set X of Rn two
real-valued functions cX and hX defined on R+ which provide two measures
of how much the set X fails to be convex at a given scale. First, we show
that, when P is a finite point set, an upper bound on cP (t) entails that the
Rips complex of P at scale r collapses to the Čech complex of P at scale
r for some suitable values of the parameters t and r. Second, we prove
that, when P samples a compact set X, an upper bound on hX over some
interval guarantees a topologically correct reconstruction of the shape X
either with a Čech complex of P or with a Rips complex of P . Regarding the
reconstruction with Čech complexes, our work compares well with previous
approaches when X is a smooth set and surprisingly enough, even improves
constants when X has a positive µ-reach. Most importantly, our work shows
that Rips complexes can also be used to provide shape reconstructions having
the correct homotopy type. This may be of some computational interest in
high dimensions.
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1. Introduction

In this paper, we formulate conditions under which the Rips complex of
a point set reflects the homotopy type of the shape that the points sample
using measures of how far this shape is from being convex.

Motivation. The problem of reconstructing shapes from point clouds arises
in many fields, including computer graphics and machine learning [3, 23].
Maybe one of the simplest reconstruction method is to output an α-offset
of the sample points, that is, the union of balls centered at the sample with
radius α. Assuming the shape is a smooth manifold [34, 19] or more generally
has a positive µ-reach [17], it has been proved that this method provides
indeed an approximation with the correct homotopy type for a sufficiently
dense sample and a suitable value of the offset parameter α. Topologically,
this is equivalent to computing the α-shape [24, 26] of the sample points,
which can be obtained by first building the Delaunay triangulation and then
keeping simplices that fit in an empty ball of radius α or less.

This approach works well for point clouds in three-dimensional space
which have Delaunay triangulations of affordable size [5, 6]. But, as the
dimension of the ambient space increases, the size of the Delaunay triangu-
lation explodes [1] and other strategies must be found. If the data points lie
on a low-dimensional submanifold, it seems reasonable to ask that the result
of the reconstruction depends only upon the intrinsic dimension of the data.
This motivated de Silva [21] to introduce witness complexes and Boissonnat
and Ghosh [13] to define tangential Delaunay complexes. For medium dimen-
sions, Boissonnat and al. [12] have modified the data structure representing
the Delaunay complex and are able to manage complexes of reasonable size
up to dimension six in practice. In particular, they avoid the explicit repre-
sentation of all Delaunay simplices by storing only edges in what they call
the Delaunay graph, an idea close to that of using Vietoris-Rips complexes
developed in this paper.

Vietoris-Rips complexes. Given a point set P and a scale parameter α, the
Vietoris-Rips complex is the simplicial complex whose simplices are subsets
of points in P with diameter at most 2α. Rips complexes are examples of
flag complexes, and as such enjoy the property that a subset of P belongs to
the complex if and only if all its edges belong to the complex. In other words,
Rips complexes are completely determined by the graph of their edges. This
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compressed form of storage makes Rips complexes very appealing for compu-
tations, at least in high dimensions. Recent results study their simplification
through homotopy-preserving edge collapses [36, 37] and edge contractions
[8]. However, the strategy of using Rips complexes makes sense only if they
are able to reflect the topology of the shape that their vertices sample. A
closely related family of simplicial complexes are Čech complexes. Specifi-
cally, the Čech complex of P at scale α consists of all simplices spanned by
points in P that fit in a ball of radius α. The Čech complex of P at scale α
is homotopy equivalent to the α-offset of P and therefore also possesses the
ability to reproduce the topology of the shape sampled by P . This property
was used by Chazal and Oudot [20] to extract topological information on
the shape from the Rips complex filtration, by interleaving it with the Čech
complex filtration and using persistence topology.

The main contribution of this paper is to unveil a more direct relation-
ship between the respective topologies of the Rips complex and the sampled
shape. Specifically, we give conditions under which Rips complexes capture
the topology of the shape. In a different setting, it has been proved in [30, 31]
that the Rips complex of a point set close enough to a Riemannian manifold
for the Gromov-Hausdorff distance shares the homotopy type of the mani-
fold. However, these results focus on smooth manifolds, consider the intrinsic
Riemannian metric instead of the Euclidean ambient metric and are not ef-
fective since they do not give explicit constants. Nevertheless, they suggest
that Rips complexes could be used in practice to produce topologically cor-
rect approximations of shapes. If the distances are measured using the `∞
norm then the Rips complex of P at scale α is equal to the Čech complex of
P at scale α and is also homotopy equivalent to the union of hypercubes of
side length 2α centered at the points of P [14]. In this case the authors in
[7] state conditions under which the Rips complex of P reproduces the ho-
motopy type of the shape sampled by P . In this paper we suppose distances
are measured using the Euclidean norm. Extensions to more general metric
spaces will be evoked in the conclusion.

Partially related to our work, we should mention [16] which relates the
fundamental group of a Rips complex and its shadow (see below) in dimension
2 and give counterexamples in higher dimensions.

Sampling conditions. In any case, it is necessary for a point cloud to be
accurate and dense enough to reflect the topology of the shape it samples.
The quality of the sample is typically expressed in terms of Hausdorff distance
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to the shape. Guaranteed reconstruction methods are generally accompanied
by results of the following form: if the Hausdorff distance is smaller than some
notion of topological feature size of the shape, then the output is topologically
correct. First sampling conditions were expressed in terms of the reach,
which is the infimum of distances between points in the shape and points
in its medial axis [4, 2, 11, 34, 19]. Unfortunately, the reach vanishes on
sharp concave edges and therefore is not suitable for expressing sampling
conditions for non-smooth manifolds or stratified objects. To deal with this
problem, authors in [17] introduce a new characterization of the feature size,
the µ-reach, which allows them to formulate sampling conditions for a large
class of non-smooth compact subsets of Euclidean space.

In this work, we introduce two new measures of feature size, both called
convexity defects. Roughly speaking, they measure how far an object is from
being locally convex, in the same manner as curvature measures how far
an object is from being locally flat. In Section 5, we use these measures
to express sampling conditions first for the Čech complex and second for
the Rips complex. Regarding the reconstruction with Čech complexes, our
work compares well with previous approaches when X is a smooth set and
surprisingly enough, even improve constants when X has a positive µ-reach.
Most importantly, this new framework allows us to prove that Rips complexes
also provide topologically correct reconstruction, assuming shapes have a
positive µ-reach, for µ sufficiently large.

The remaining sections are organized as follows. In Section 2 we present
the necessary background and define the Čech complex and the Rips complex.
In Section 3 we introduce and study our two convexity defects functions
cX : R+ → R+ and hX : R+ → R+ that we associate with any non-empty
bounded subset X ⊂ Rn. Section 4 describes a condition based on cP under
which the Rips complex of a point set P at scale α deformation retracts
to the Čech complex of P at scale α. This key condition is encapsulated in
Theorem 7. In Section 5 we consider a shape X sampled by a point set P and
formulate conditions under which either Čech complexes or Rips complexes of
P provide approximations of X with the correct homotopy type. We express
those conditions first in terms of an upper bound on cX then for shapes with
a positive µ-reach. Section 6 concludes the paper.
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2. Background

In this section we introduce the basic definitions and properties needed
in the paper and review two well-known examples of simplicial complexes:
the Čech complex and the Rips complex.

2.1. Metric space, distances, smallest enclosing ball
Throughout this paper, we shall consider subsets of the Euclidean n-

space Rn for n ≥ 1. The Euclidean distance between two points x and y
of Rn is denoted ‖x − y‖. Given two subsets X and Y of Rn, we write
dH(Y |X) = supy∈Y d(y,X) for the one-sided Hausdorff distance of Y from
X, where d(y,X) is the infimum of the Euclidean distances between y and
points x in X. Observe that dH(Y |X) ≤ ε if and only if Y is contained in
the ε-offset Xε = {y ∈ Rn | d(y,X) ≤ ε}. The Hausdorff distance between X
and Y is dH(X, Y ) = max{dH(X |Y ), dH(Y |X)}. Recall that the diameter
of a subset σ of Rn is the supremum of distances between pairs of points in
σ, which we denote as Diam(σ) = supp,q∈σ ‖p− q‖. A subset σ is said to be
bounded if its diameter is finite.

The closed ball with center z and radius r is denoted B(z, r). Balls will
always be assumed to be closed, unless stated otherwise. It is well known that
the smallest ball enclosing a non-empty bounded set σ of Rn is well-defined
(see Appendix A for a proof). We denote its center by Center(σ) and its
radius by Rad(σ). Writing Hull(X) for the convex hull of a subset X ⊂ Rn

and X for the closure of X, it is not hard to check (by contradiction) that

Center(σ) ∈ Hull(σ).

The following inequalities will be useful in Section 2.4 for relating Čech and
Rips complexes:

1

2
Diam(σ) ≤ Rad(σ) ≤ ϑn

2
Diam(σ) where ϑn =

√
2n

n+ 1
. (1)

The right most inequality is also known as Jung’s Theorem and a short proof
can be found in [22]. In particular, we have Rad(σ) < 1√

2
Diam(σ) for all

dimensions n.
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2.2. Abstract simplicial complexes
Let P be a finite set of points in Rn. We call any non-empty subset σ ⊂ P

an abstract simplex. Its dimension is one less than its cardinality. A i-simplex
is an abstract simplex of dimension i. If τ ⊂ σ is a non-empty subset, we
call τ a face of σ and σ a coface of τ . An abstract simplicial complex K is a
collection of non-empty abstract simplices that contains, with every simplex,
the faces of that simplex. The vertex set of the abstract simplicial complex
K is the union of its elements, Vert(K) =

⋃
σ∈K σ. A subcomplex of K

is a simplicial complex L ⊂ K. A particular subcomplex is the i-skeleton
consisting of all simplices of dimension i or less, which we denote by K(i).
The shadow of K is the subset of Rn covered by the convex hull of simplices
in K, ShdK =

⋃
σ∈K Hull(σ), not to be confused with |K|, the underlying

space of a geometric realization of K; see [33]. Let N be the cardinality of
the vertex set of K. The underlying space |K| of K can be defined (up to
a homeomorphism) by considering a map f : Vert(K) → RN−1 that sends
the N vertices of K to N affinely independent points in RN−1 and by setting
|K| =

⋃
σ∈K Hull(f(σ)). Generally, |K| and ShdK are not homeomorphic,

as illustrated in Figure 1.
We now review two natural ways of constructing an abstract simplicial

complex, given as input a finite set of points in Rn and a feature scale pa-
rameter t ≥ 0. The definitions given below appear in different forms in the
literature.

α ϑ2 α

Figure 1: Left: the Čech complex with parameter α comprises six triangles and is homo-
topy equivalent to a circle. Middle: the Rips complex with parameter α contains two more
triangles and is homeomorphic to a 2-sphere. Its shadow is a topological disk. Right: the
Čech complex with parameter ϑ2 α contains all faces of the 5-simplex and is homeomorphic
to a 5-ball.
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2.3. The Čech complex
The Čech complex C(P, t) is the abstract simplicial complex whose k-

simplices correspond to subsets of k+ 1 points that can be enclosed in a ball
of radius t,

C(P, t) = {σ | ∅ 6= σ ⊂ P,Rad(σ) ≤ t}.

Equivalently, a k-simplex {p0, . . . , pk} belongs to the Čech complex if and
only if the k + 1 closed Euclidean balls B(pi, t) have non-empty common
intersection. Let NrvF = {G ⊂ F |

⋂
G 6= ∅} denote the nerve of the

collection F . The Čech complex is the nerve of the collection of balls {B(p, t) |
p ∈ P}. Since balls are convex, the Nerve Lemma [10, 27] implies that the
Čech complex C(P, t) is homotopy equivalent to the union of these balls, that
is, |C(P, t)| ' P t =

⋃
p∈P B(p, t).

2.4. The Rips complex
The Vietoris-Rips complex is a variant of the Čech complex which is easier

to compute. The Vietoris-Rips complex, R(P, t) is the abstract simplicial
complex whose k-simplices correspond to subsets of k + 1 points in P with
diameter at most 2t,

R(P, t) = {σ | ∅ 6= σ ⊂ P,Diam(σ) ≤ 2t}.

For simplicity, we refer to R(P, t) as the Rips complex. Recall that the flag
complex of a graph G, denoted FlagG, is the maximal simplicial complex
whose 1-skeleton is G. The Rips complex is an example of a flag complex.
More precisely, this is the largest simplicial complex sharing with the Čech
complex the same 1-skeleton, R(P, t) = Flag

(
C(P, t)(1)

)
. Generally, R(P, t)

and C(P, t) do not share the same topology; see Figure 1. It follows that the
Rips complex R(P, t) is generally not homotopy equivalent to the t-offset P t.
Our goal in the next section is to find a condition on the point set P which
guarantees that |R(P, t)| ' |C(P, t)| and therefore |R(P, t)| ' P t. Along the
way, we will need a result in [22] which is a consequence of Equation (1) and
which says that there is chain of inclusion

C(P, t) ⊂ R(P, t) ⊂ C(P, ϑnt) where ϑn =

√
2n

n+ 1
. (2)
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3. Convexity defects measures

In this section, we introduce and study two functions that one can as-
sociate with any non-empty bounded subset X ⊂ Rn and that provide two
different ways of measuring convexity defects of X. Based on the first func-
tion, we will formulate in Section 4 a condition which suffices to guarantee
that the Rips complex of a finite set of points P at scale α deformation re-
tracts to the Čech complex of P at scale α. Based on the second function,
we will formulate in Section 5 sampling conditions under which the Čech and
Rips complexes of a point set P provide topologically correct reconstructions
of a shape X sampled by the points in P .

3.1. Definitions and basic properties
To avoid lengthy sentences, we adopt the convention that the subset X ⊂

Rn is always assumed to be non-empty and bounded in this section. In
particular, any non-empty subset σ ⊂ X is also bounded and thus has a
well-defined smallest enclosing ball. We first define the set of centers of X
at scale t as the subset (see Figure 2, left):

Centers(X, t) =
⋃
∅6=σ⊂X
Rad(σ)≤t

{Center(σ)}.

Recalling that Hull(X) denotes the convex hull of X, we then extend the
notion of convex hull. Specifically, we define the convex hull of X at scale t
as the subset (see Figure 2, right)

Hull(X, t) =
⋃
∅6=σ⊂X
Rad(σ)≤t

Hull(σ).

If X is compact then Hull(X, t) is a superset of Centers(X, t). If P is a finite
set of points then Hull(P, t) is the shadow of the Čech complex C(P, t).

Definition 1 (Convexity defects functions). Given a subset X ⊂ Rn,
we associate to X two real-valued functions: the first one cX : R+ → R+ is
defined by cX(t) = dH(Centers(X, t) |X) and the second one hX : R+ → R+

is defined by hX(t) = dH(Hull(X, t) |X).
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Figure 2: Smallest offset of X containing Centers(X, t) on the left and Hull(X, t) on the
right.

Intuitively, cX and hX can be thought of as functions that measure the
convexity defects of X at a given scale. To make this idea precise, observe
that if X ⊂ Rn is compact, then we have the three equivalences: X convex
if and only if cX = 0 if and only if hX = 0. The two convexity functions
cX and hX will play a different role. While cP is all we need to study the
Rips complex of a finite point set P in Section 4, it turns out that hX is
more stable than cX and will be used in Section 5.1 to express sampling
conditions in reconstruction theorems. We plotted the graph of the function
cP for various finite point sets in Figure 10.

Before studying in more details functions cX and hX in the next two
sections, let us make some brief remarks. Because X is a subset of both
Centers(X, t) and Hull(X, t), it follows that the two one-sided Hausdorff dis-
tances dH(X | Centers(X, t)) and dH(X | Hull(X, t)) vanish. Hence, we could
have used in the above definition two-sided Hausdorff distances instead of
one-sided Hausdorff distances. The two functions cX and hX both vanish
at 0, are increasing in the interval [0,Rad(X)] and become constant above
Rad(X). Since Center(σ) ∈ Hull(σ), we have cX ≤ hX . It is easy to check
that for a subset X ⊂ Rn and two non-negative real numbers t and α, the fol-
lowing three conditions are equivalent: (1) hX(t) ≤ α; (2) Hull(X, t) ⊂ Xα;
(3) [Rad(σ) ≤ t =⇒ Hull(σ) ⊂ Xα] for all σ ⊂ X. In particular, we get
that hX(t) ≤ t for all t ≥ 0 since Rad(σ) ≤ t =⇒ Hull(σ) ⊂ σt as a direct
consequence of Lemma 1 (below) applied for x = y.

Lemma 1. For any non-empty bounded subset σ ⊂ Rn, any point x ∈ Rn
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and any point y ∈ Hull(σ), we have that d(x, σ)2 ≤ ‖x − y‖2 + Rad(σ)2 −
‖y − Center(σ)‖2.

B1

H01

σ
B0

y

Center(σ)x

Hull(σ)

Figure 3: Notation for the proof of Lemma 1.

Proof. Suppose d(x, σ) > ‖x − y‖ for otherwise the result is clear. Let
B0 be the smallest ball enclosing σ and let B1 be the largest ball centered
at x whose interior does not intersect σ; see Figure 3. By construction,
σ ⊂ B0 \ B1. Recall that the power distance of a point y from a ball B
is πB(y) = ‖y − z‖2 − r2, where z is the center of B and r its radius. Let
H01 be the set of points whose power distance to B0 is at most as large as
the power distance to B1. H01 is a closed half-space which contains the set
difference B0 \ B1. In particular, it contains σ and any point y ∈ Hull(σ).
Thus, πB0(y) ≤ πB1(y) and the result follows.

3.2. Characterizing critical values of the distance function
In the previous section we noted that cX(t) ≤ hX(t) ≤ t for all t. The

goal of this section is to establish that equality is attained if and only if t is
a critical value of the distance function to X. This property will not be used
before Section 5 but sheds light on results of Section 4.

We need some definitions. The distance function d(·, X) to the com-
pact set X ⊂ Rn maps every point y ∈ Rn to its Euclidean distance to
X, d(y,X) = minx∈X ‖x − y‖. Although the distance function is not differ-
entiable, it is possible to define a notion of critical points analogue to the
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classical one for differentiable functions as illustrated in Figure 4. Specifi-
cally, Grove defines in [29, page 360] critical points for the distance function
to a closed subset of a Riemannian manifold. We recast this definition in our
context as follows. Let ΓX(y) = {x ∈ X | d(y,X) = ‖x − y‖} be the set of
points in X closest to y:

Definition 2. We say that y ∈ Rn is a critical point of the distance function
d(·, X) if y ∈ Hull(ΓX(y)). The critical values of d(·, X) are the images by
d(·, X) of its critical points.

yΓX(y)

t

X

Figure 4: The black points are the critical points of the curve X.

Next lemma provides two characterizations of the critical values of the
distance function to a compact set X ⊂ Rn, based respectively on the two
convexity defects functions cX and hX .

Lemma 2. For any compact set X ⊂ Rn and any real number t > 0, the
following three conditions are equivalent: (1) t is a critical value of d(·, X);
(2) cX(t) = t; (3) hX(t) = t.

Proof. Consider a non-empty bounded subset σ ⊂ Rn and a point y ∈ Rn.
Making x = y in Lemma 1, we observe that if y ∈ Hull(σ) satisfies d(y, σ) ≥ t
and Rad(σ) ≤ t, then y = Center(σ) and t = Rad(σ).

Let us prove that (1) =⇒ (2). Consider a critical point y whose distance
to X is t and set σ = ΓX(y) as shown in Figure 4. By definition y ∈ Hull(σ)
and by construction d(y, σ) = t and Rad(σ) ≤ t. Thanks to our observation,
it follows that y = Center(σ) and consequently cX(t) = t. The implication
(2) =⇒ (3) follows from cX(t) ≤ hX(t) ≤ t. Let us prove that (3) =⇒
(1). In other words, suppose hX(t) = t and let us prove that t is a critical
value of d(·, X). Since X is compact, hX(t) = t means that we can find
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a compact set ∅ 6= σ ⊂ X with Rad(σ) ≤ t and y ∈ Hull(σ) such that
t = d(y,X) ≤ d(y, σ). Our observation then implies that y = Center(σ),
t = Rad(σ) and σ represents a set of points in X with minimum distance to
y. Since y ∈ Hull(σ) ⊂ Hull(ΓX(y)), it follows that y is a critical point of
the distance function to X, which concludes the proof.

An adaptation of Morse theory to distance functions tells us that changes
in the topology of t-offsets X t occur when the offset parameter t reaches crit-
ical values of the distance function to X. Indeed, slightly recasting Proposi-
tion 1.8 in [29, page 362], we have:

Theorem 3 (Isotopy Theorem [29]). Let X ⊂ Rn be a compact set and let
β ≥ α > 0 be two real numbers. If the distance function d(·, X) has no
critical values in the interval [α, β], then Xβ deformation retracts to Xα.

Our characterizations of critical values allow us to reexpress the condition
in the above theorem. To be specific, we get that if cX(t) < t for all t ∈ [α, β],
then Xβ deformation retracts to Xα. Replacing X by a finite point set P and
using that the Čech complex C(P, t) is homotopy equivalent to the t-offset P t,
we obtain that C(P, β) is homotopy equivalent to C(P, α) whenever cP (t) < t
for all t ∈ [α, β]. We shall see in Section 4 that under the same condition
a stronger result holds, namely the existence of a sequence of collapses from
C(P, β) to C(P, α). Strengthening this condition, we will be able to guarantee
the existence of a sequence of collapses from R(P, β) to C(P, α). Variants
of this condition will then be devised in Section 5 to ensure topologically
correct reconstruction of shapes by Čech or Rips complexes.

3.3. Stability
In this section, we state the stability of cX and hX . For technical reasons,

we need the stability of cP under perturbations of P at the end of the proof
of Theorem 7 in Section 4 to relax the assumption that the finite point set P
that we consider is in general position. The stability of hX under perturbation
of X will be crucial for establishing reconstruction theorems in Section 5.

Lemma 4. For every pair of subsets X and Y of Rn such that dH(X, Y ) ≤ ε
and for every t ≥ 0, we have

cY (t) ≤ cX(t+ ε) +
√

2tε+ ε2 + ε.
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Proof. Consider a non-empty subset σ ⊂ Y with Rad(σ) ≤ t and set ξ =
X ∩ σε. By construction, ξ is non-empty and dH(ξ, σ) ≤ ε. Hence, setting
δ =

√
2tε+ ε2, Lemma 16 implies that Rad(ξ) ≤ t + ε and ‖Center(σ) −

Center(ξ)‖ ≤ δ. We get

Center(σ) ⊂ Center(ξ)δ ⊂ XcX(t+ε)+δ ⊂ Y cX(t+ε)+δ+ε,

yielding to the result.

Lemma 5. For every pair of subsets X and P of Rn such that dH(X,P ) ≤ ε
and for every t ≥ 0, we have hP (t) ≤ hX(t+ ε) + 2ε.

Proof. Consider a non-empty subset σ ⊂ P with Rad(σ) ≤ t and set ξ =
X ∩ σε. By construction, ξ is non-empty and dH(ξ, σ) ≤ ε. Hence, Lemma
16 implies that Rad(ξ) ≤ t + ε. Using Hull(ξε) = Hull(ξ)ε, we get that
Hull(σ) ⊂ Hull(ξ)ε ⊂ XhX(t+ε)+ε ⊂ P hX(t+ε)+2ε, yielding the result.

4. From Rips to Čech complexes

In this section, we introduce a 2-parameter family of Rips complexes
and give the precise condition on a finite point set for which we can prove
that a Rips complex in this family deformation retracts to a Čech complex.
We begin by defining this family of Rips complexes and state our results in
Section 4.1. We then introduce the tools we need to prove our results in
Section 4.2. The proofs are presented in Section 4.3.

4.1. Quasi Rips complexes and statement of results
Following [16], we first define a 2-parameter family that contains prior

Rips complexes as a subfamily. The motivation for this construction is to
account for the uncertainty of measures by allowing uncertainty of the edges
belonging to Rips complexes in the family; see [16].

Definition 3. For any point set P ⊂ Rn and any real numbers α, β ≥ 0
with α ≤ β, we call the flag complex of any graph G satisfying R(P, α) ⊂
FlagG ⊂ R(P, β) an (α, β)-quasi Rips complex of P .

In other words, the simplicial complex FlagG is an (α, β)-quasi Rips
complex of P if and only if every pairs of points in P within distance 2α
are connected by an edge in G and no edge of G has length larger than 2β.
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Equivalently, for every pairs (p, q) ∈ P 2, ‖p − q‖ ≤ 2α implies pq ∈ G and
‖p−q‖ > 2β implies pq 6∈ G. In particular, K is an (α, α)-quasi Rips complex
of P if and only if K = R(P, α).

To state our results, it is convenient to define α to be an inert value of P
if Rad(σ) 6= α for all non-empty subsets σ ⊂ P . The finiteness of P implies
that P has only finitely many non-inert values. Thus, assuming α to be inert
is not a too restrictive hypothesis.

As a warm-up, we first state conditions in Theorem 6 (below) under
which there exists a sequence of elementary collapses which transform one
Čech complex into another one. We recall that an elementary collapse is the
operation that removes a pair of simplices (σ, τ) from a simplicial complex K
assuming τ is the unique proper coface of σ in K. The result is a simplicial
complex K \ {σ, τ} to which K deformation retracts.

Theorem 6. Let P ⊂ Rn be a finite set of points. For any real numbers
β ≥ α ≥ 0 such that α is an inert value of P and cP (t) < t for all t ∈ [α, β],
there exists a sequence of elementary collapses from C(P, β) to C(P, α).

Theorem 6 can be thought of as a combinatorial version of the Isotopy
theorem presented in Section 3.2. We are now ready to state our main
theorem:

Theorem 7. Let P ⊂ Rn be a finite set of points. For any real numbers
β ≥ α ≥ 0 such that α is an inert value of P and cP (ϑn β) < 2α−ϑn β, there
exists a sequence of elementary collapses from any (α, β)-quasi Rips complex
of P to the Čech complex C(P, α).

Note that choosing β = α in the theorem gives conditions under which
|R(P, α)| ' |C(P, α)| ' Pα. Figure 7 on the left provides a graphical repre-
sentation of the hypothesis of the theorem. Let us sketch quickly the proof
of Theorem 7. Observe that the condition cP (ϑn β) < 2α− ϑn β implies that
cP (t) < t for all t ∈ [α, ϑn β] since

cP (t) ≤ cP (ϑn β) < 2α− ϑn β ≤ α ≤ t,

whenever α ≤ t ≤ ϑn β. Theorem 6 then implies that there exists a sequence
of collapses reducing C(P, ϑn β) to C(P, α). Since any (α, β)-quasi Rips com-
plex FlagG is nested between C(P, α) and C(P, ϑn β), the key idea in the proof
of the above theorem is to monitor changes in the complex C(P, t) ∩ FlagG
as we decrease the scale parameter t from ϑn β to α, that is as we go from
C(P, ϑn β) to FlagG. The proof is given in Section 4.3. Before embarking in
the proof, we will define collapses and extended collapses in the next section.

14



4.2. Extended collapses
In this section, we introduce collapses and extended collapses which will

turn out to be convenient to describe changes that occur in the families of
complexes that we consider in our proof of Theorem 7.

We need some definitions. The inclusion defines a partial order relation
on simplices. Given a set of simplices Σ and a simplex σ ∈ Σ, we say that σ
is inclusion-maximal in Σ if σ has no proper coface in Σ. Similarly, we say
that σ is inclusion-minimal if it has no proper face in Σ. When clear from
the context we will omit Σ. Suppose σ is a simplex of the simplicial complex
K. The star of σ in K, denoted StK(σ), is the collection of simplices of K
having σ as a face. The closure of StK(σ) is denoted StK(σ); it is the smallest
simplicial complex containing StK(σ). The link of σ in K, denoted LkK(σ),
is the collection of simplices of K lying in StK(σ) that are disjoint from σ. A
simplicial complex K is said to be a cone if it contains a vertex o such that
the following implication holds: σ ∈ K =⇒ σ ∪ {o} ∈ K. The vertex o is
called the apex of the cone. By definition a cone can never be empty since it
always contains at least its apex.

σ

oo

σ

γ γ

Figure 5: Left: In a classical collapse, the link of σ has a unique inclusion-maximal simplex
γ. Equivalently, the star of σ has a unique inclusion-maximal simplex σ ∪ γ different from
σ. Right: In an extended collapse, the link of σ is a cone with apex o.

Given a simplicial complex K, we are interested in the operation that
removes the entire star of a simplex σ ∈ K as illustrated in Figure 5. Pro-
vided that there is a unique inclusion-maximal simplex τ 6= σ in the star of
σ, it is well-known that |K| deformation retracts to |K \ StK(σ)| and the
operation that removes StK(σ) is then called a collapse [25]. Any collapse
can be decomposed into a finite sequence of elementary collapses. Follow-
ing and extending what was done in [9], we call the operation that removes
StK(σ) assuming the weaker condition that the link of σ is a cone an extended
collapse. Our terminology finds its justification in the following lemma.
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Lemma 8. Let K be a simplicial complex and let σ be a simplex of K. If the
link of σ is a cone, then there is a sequence of collapses from K to K\StK(σ).

Proof. First, we establish that a cone L can always be reduced to its apex o
by a sequence of collapses. Suppose L 6= {o} for otherwise the result is clear
and consider an inclusion-maximal simplex in L. It has the form α ∪ {o}
with o 6∈ α ∈ L. Let us prove that the operation that removes the pair of
simplices (α, α ∪ {o}) is a collapse. If β is a coface of α, then β ∪ {o} is a
coface of α ∪ {o}. Since α ∪ {o} is inclusion-maximal, the only possibility is
that β ∪ {o} = α ∪ {o}, showing that all cofaces of α are faces of α ∪ {o}.
Thus, removing the pair (α, α ∪ {o}) is a collapse and the result is still a
cone with apex o but with a smaller number of simplices. By repeating the
process we eventually get a complex reduced to {o}.

Now, suppose the link of σ in K is a cone L with apex o. We deduce
from the previous sequence of collapses that reduces L to {o} a sequence of
collapses that reduces K to K \ StK(σ) as follows. To each collapse that
removes the pair (α, α∪{o}) in L described above, we associate the collapse
that removes the pair (σ∪α, σ∪α∪{o}) in K. Indeed, since α has a unique
proper coface α ∪ {o} in L, it follows that σ ∪ α has a unique proper coface
σ ∪ α ∪ {o} in K. At the end of this sequence of collapses, the link of σ is
reduced to {o}. After a last collapse that removes the pair (σ, σ ∪ {o}) we
get K \ StK(σ).

4.3. Proof of results
We will prove directly Theorem 7 and omit the proof of Theorem 6 since

one can easily derive a proof of Theorem 6 by slightly adapting the first part
of the proof below.

Proof of Theorem 7. Let G be a graph whose flag complex is an (α, β)-quasi
Rips complex of P . For t ≥ 0, consider the simplicial complex F(t) =
C(P, t) ∩ FlagG. Clearly, we have the chain of inclusions:

C(P, α) ⊂ R(P, α) ⊂ FlagG ⊂ R(P, β) ⊂ C(P, ϑn β)

and therefore F(α) = C(P, α) and F(ϑn β) = FlagG. As we continuously
increase the feature parameter t from α to ϑn β, we get a finite family of
nested Čech complexes:

C(P, α) = C0 ⊂ C1 ⊂ · · · ⊂ Ck = C(P, ϑn β).
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For 0 < i < k, let ti be the smallest value of t such that Ci = C(P, t)
and set Fi = F(ti). In particular, Ci = C(P, ti) and Fi = Ci ∩ FlagG.
Correspondingly, we get a 1-parameter family of simplicial complexes by
intersecting each complex Ci in the above sequence with FlagG:

C(P, α) = F0 ⊂ F1 ⊂ · · · ⊂ Fk = FlagG.

Let us first assume that P satisfies the two generic conditions (?) and (??)
instead of the condition that Rad(σ) 6= α for all non-empty subsets σ ⊂ P :

(?) For all simplices σ, τ ⊂ P , if Rad(σ) = Rad(τ) then Center(σ) =
Center(τ);

(??) For any ball B, the set of simplices in P that have B as a smallest en-
closing ball is either empty or has a unique inclusion-minimal element.

Under these two conditions, we prove the theorem in two stages. First, we
show that Ci−1 is a collapse of Ci for all 0 < i ≤ k. Secondly, we show that
Fi−1 is either equal or an extended collapse of Fi for all 0 < i ≤ k.

(a) Because of condition (?), all simplices in the set difference Ci \ Ci−1
share the same smallest enclosing ball B(zi, ti) with center zi and radius ti.
Because of condition (??), the set of simplices sharing the same smallest
enclosing ball B(zi, ti) has a unique inclusion-minimal element σi. Our plan
is to prove that Ci \ Ci−1 is the star of σi and has a unique inclusion-maximal
element τi 6= σi which will entail that Ci collapses to Ci−1. Suppose η is a
coface of σi in Ci. Since σi ⊂ η, we deduce that ti = Rad(σi) ≤ Rad(η) and
therefore η ∈ Ci \ Ci−1. Hence, Ci \ Ci−1 is the star of σi in Ci. Note that the
simplex τi = {p ∈ P | ‖zi − p‖ ≤ ti} obtained by gathering all points of P
in B(zi, ti) belongs to Ci \ Ci−1 and is the unique inclusion-maximal simplex
in this set difference (see Figure 6, left). To prove that Ci collapses to Ci−1,
it remains to establish that σi 6= τi. By choice of σi as an inclusion-minimal
element amongst simplices with smallest enclosing ball B(zi, ti), the vertices
of σi all lie on the sphere with center zi and radius ti. On the other hand, by
definition of cP (ti) as the one-sided Hausdorff distance of the centers of P at
scale ti from P , there exists at least a point o of P at distance cP (ti) or less
from the center zi. Since cP (ti) ≤ cP (ϑn β) < α ≤ ti, the point o belongs to
the interior of B(zi, ti). Thus, o 6∈ σi, o ∈ τi, and therefore σi 6= τi, showing
that Ci collapses to Ci−1.

(b) Let us now turn our attention to Fi and Fi−1. If σi 6∈ Fi, then
Fi = Fi−1. If σi ∈ Fi, the star of σi in Fi is equal to the star of σi in Ci
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ti

zi
o

p
FlagG

σi

τi
Ci \ Ci−1

Fi \ Fi−1

cP (ti)

Figure 6: Notation for the proof of Theorem 7. Left: τi is the simplex whose vertices are
points of P in B(zi, ti). σi is the face obtained by keeping vertices on the boundary of
B(zi, ti). Right: Schematic representation of simplices in Ci \ Ci−1.

intersection the flag of G and Fi−1 = Fi \ StFi(σi) (see Figure 6, right). Let
us prove that the link of σi in Fi is a cone with apex o, which guarantees
that Fi−1 is an extended collapse of Fi. Suppose η is a coface of σi in Fi and
let us show that η∪{o} is also a coface. Clearly, η∪{o} belongs to the Čech
complex Ci since for all points p ∈ η ∪ {o}, ‖zi − p‖ ≤ ti. Let us prove that
η∪{o} also belongs to FlagG. Since η belongs to FlagG, it suffices to prove
that all edges connecting o to a vertex p of η have length 2α or less. Indeed,
for all points p ∈ η, we have

‖p− o‖ ≤ ‖zi − p‖+ ‖zi − o‖ ≤ ti + cP (ti) ≤ 2α

showing that η∪{o} ∈ FlagG. Hence, η∪{o} belongs to Fi. Setting η = σi,
we get that σi ∪ {o} is a coface of σi and since o 6∈ σi, it follows that {o}
belongs to the link of σi in Fi. Hence, the link of σi in Fi is a cone, which
concludes the proof of Theorem 7 assuming generic conditions (?) and (??)
instead of the condition Rad(σ) 6= α for all non-empty subsets σ ⊂ P .

If P does not satisfy the generic conditions (?) and (??), we use Lemma
17 in Appendix B to find a perturbation f of the points such that f(P )
satisfies (?) and (??) and conditions (i), (ii) and (iii) of Lemma 17 for some
β′ > β. Applying Theorem 7 to f(P ) with the values α and β′, we get
that there exists a sequence of collapses from the (α, β′)-quasi Rips com-
plex Flag f(G) = f(Flag(G)) to the Čech complex C(f(P ), α) = f(C(P, α)).
Hence, the theorem also holds in the non-generic case.
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5. Shape reconstruction

In this section, we are interested in reconstructing a compact set X ⊂ Rn

only known through a finite set of possibly noisy points P ⊂ Rn. Using the
convexity defect function hX , we formulate two sampling conditions which
guarantee respectively that the Čech complex and the Rips complex of P are
homotopy equivalent to any arbitrarily small offset of X (Section 5.1). We
then construct a bridge between shapes with an upper bounded convexity
defects function and shapes with a lower bounded critical function in Section
5.2. Finally, we compute in Section 5.3 the lowest density of points authorized
by our theorems for a correct reconstruction of shapes with a positive µ-reach.

5.1. Sampling conditions based on convexity defects functions
We assemble the pieces and deduce conditions under which the Čech

complex and the Rips complex of a finite set of points retrieve the topology
of the shape the points sample. Throughout the section, X designates a
compact subset of Rn and P is a finite set of points, whose Hausdorff distance
to X is ε or less.

Reconstruction with the Čech complex. The assumption that dH(X,P ) ≤ ε
implies the following chain of inclusions:

Pα ⊂ Xα+ε ⊂ Pα+2ε ⊂ Xα+3ε.

From [7], we know that whenever we consider four nested spaces P0 ⊂ X0 ⊂
P1 ⊂ X1 such that X1 deformation retracts to X0 and P1 deformation re-
tracts to P0, then X0 deformation retracts to P0. Applying this result to our
context combined with the Isotopy Theorem and the characterization of crit-
ical points given in Lemma 2, we deduce immediately that Xα+ε deformation
retracts to Pα whenever the following two conditions are fulfilled:

hX(t) < t, ∀t ∈ [α + ε, α + 3ε],

hP (t) < t, ∀t ∈ [α, α + 2ε].

Since dH(X,P ) ≤ ε, Lemma 5 implies that hP (t) ≤ hX(t+ε)+2ε and there-
fore the above two conditions are fulfilled as soon as the following stronger
condition holds: hX(t) < t − 3ε, ∀t ∈ [α + ε, α + 3ε]. Because hX is non-
negative, this condition implies that 2ε < α. Because hX is increasing, it
also implies that hX(t) < t for all t ∈ [α− 2ε, α+ 3ε], showing that η-offsets
of X for η in the interval [α − 2ε, α + 3ε] are all homotopy equivalent. We
summarize our findings in the following theorem:

19



Theorem 9. Let ε, α > 0 such that 2ε < α. Let P be a finite set of points
whose Hausdorff distance to a compact subset X is ε or less. The Čech
complex C(P, α) is homotopy equivalent to Xη for all η ∈ [α − 2ε, α + 3ε]
whenever hX(t) < t− 3ε for all t ∈ [α + ε, α + 3ε].

t

α+ ε ϑnα

2ε ε

Z9

Z7

Z10

t− 3ε

(
2
ϑn
− 1
)
t(

2
ϑn
− 1
)
(t− ε)− 2ε

t
R

t

t

µ = 1

R

µ = 1
2

µ = 1
3

µ = 0

Figure 7: Left: For i ∈ {7, 9, 10}, the hypotheses of Theorem i are depicted as regions
Zi avoided by the graph of a convexity defects function. Specifically, if cP ∩ Z7 = ∅,
Theorem 7 implies R(P, α) ' Pα. If hX ∩ Z9 = ∅, Theorem 9 implies C(P, α) ' Xα−2ε.
If hX ∩Z10 = ∅, Theorem 10 implies R(P, α) ' X2α−ϑnα−2ε. Right: Upper bound on hX
for µ ∈ {0, 13 ,

1
2 , 1} provided by Lemma 12.

Reconstruction with the Rips complex. If furthermore we suppose that the
condition cP (ϑnβ) < 2α − ϑnβ holds, we can apply Theorem 7 and de-
duce that (α, β)-quasi Rips complexes of P deformation retracts to the Čech
complex C(P, α). Using Lemma 5, we get that cP (ϑnβ) ≤ hP (ϑnβ) ≤
hX(ϑnβ + ε) + 2ε and the hypothesis of Theorem 7 is fulfilled whenever
hX(ϑnβ + ε) < 2α − ϑnβ − 2ε. Because hX is non-negative, this condition
implies that 2ε < 2α − ϑnβ. Because hX is increasing, it also implies that
hX(t) < t− 3ε, ∀t ∈ [α + ε, α + 3ε] and the hypothesis of Theorem 9 is also
fulfilled. We deduce the following theorem:

Theorem 10. Let ε, α and β be three non-negative real numbers such that
α ≤ β and 2ε < 2α − ϑnβ. Let P be a finite set of points whose Hausdorff
distance to a compact subset X is ε or less. Then, any (α, β)-quasi Rips
complex of P is homotopy equivalent to Xη for all η ∈ [2α−ϑnβ−2ε, ϑnβ+ε]
whenever α is an inert value of P and hX(ϑnβ + ε) < 2α− ϑnβ − 2ε.
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5.2. Connections with the critical function
In this section, we show that the class of shapes with an upper bounded

convexity defect function are equivalent to the class of shapes with a lower
bounded critical function. To make this idea precise, we need to recall the
definition of critical functions instrumental in expressing sampling conditions
for a class of shapes larger than those with a positive reach in [17]. Even
though the distance function to X is not differentiable, it is possible to define
a generalized gradient function ∇X : Rn \ X → Rn that coincides with the
usual gradient at points where d(·, X) is differentiable and that vanishes
precisely at points that are critical [17]. Specifically,

∇X(y) =
y − Center(ΓX(y))

d(y,X)
.

The critical function χX : R∗+ → R+ is defined by

χX(t) = inf
d(y,X)=t

‖∇X(y)‖.

Clearly, the critical function vanishes at t if and only if t is a critical value
of the distance function. Thus, by Lemma 2, we have the equivalences:
χX(t) = 0 ⇐⇒ cX(t) = t ⇐⇒ hX(t) = t. The next two lemmas strengthen
this fact. Our first lemma provides a lower bound on χX at t, assuming an
upper bound on cX at t.

Lemma 11. For all compact set X ⊂ Rn, all 0 ≤ µ ≤ 1 and all t ≥ 0, the
following implication holds:

cX(t) < (1− µ)t =⇒ χX(t) > µ.

Proof. Consider y ∈ Rn such that d(y,X) = t and let us prove that ‖∇X(y)‖ >
µ. Let σ = ΓX(y) be the set of points in X with minimum distance to y; see
Figure 8, left. Suppose the smallest ball enclosing σ has center z and radius
s. Since s ≤ t, we get cX(s) ≤ cX(t) < (1 − µ)t and thus t − ‖y − z‖ ≤
d(z,X) ≤ cX(s) < (1− µ)t. It follows that ‖∇X(y)‖ = ‖z−y‖

t
> µ.

Next lemma can be thought of as a converse of the previous lemma, since
it provides an upper bound on hX over the interval [0, R], assuming a lower
bound on the critical function χX over the interval (0, R). It extends a result
in [7] which says intuitively that the convex hull of point set σ ⊂ X cannot
be too far away from a shape X, assuming σ can be enclosed in a ball of
small radius t and X has a positive reach.

21



Figure 8: Notation for the proofs of Lemma 11 on the left and Lemma 12 on the right.

Lemma 12. Consider two real numbers µ ∈ (0, 1] and R ≥ 0. Let X ⊂ Rn be
a compact set such that χX(t) ≥ µ for all t ∈ (0, R). Then, for all 0 ≤ t ≤ R,
one has:

hX(t) ≤
1 + µ(1− µ)−

√
1− µ(2− µ)

(
t
R

)2
µ(2− µ)

R.

Proof. Given σ ⊂ X with Rad(σ) ≤ R and y0 ∈ Hull(σ), we establish an
upper bound on d(y0, X) expressed as a function of Rad(σ).

The first step in the proof is to find a point yT that is “sufficiently” far
away from X by following an integral line of the generalized gradient ∇X

that originates at y0. Let Xc = Rn \X. The author in [32] established that
there exists a continuous map ΦX : R+ ×Xc → Xc such that:

d

dt+
ΦX(t, y) = ∇X (ΦX(t, y))

where d
dt+

denotes the right derivative. Hence, ΦX is a flow and the integral
line t 7→ ΦX(t, y0) is a rectifiable curve starting at y0. This curve either has
infinite length or ends up at a critical point of the distance function to X.
If for some T > 0 the set ΦX([0, T ], y0) contains no critical point then it
can be parameterized by a continuous function Cy0 : [0, L] → Rn such that
Cy0(0) = y0 and the length of Cy0([0, s]) is s; see Figure 8, right. Let us prove
that under the assumption of the lemma we can choose T = R − d(y0, X).
For all s < R − d(y0, X), we note that d(ys, X) ≤ d(y0, X) + ‖ys − y0‖ ≤
d(y0, X) + s < R and therefore χX(d(ys, X)) ≥ µ which implies ‖∇X(ys)‖ ≥
µ. It follows that the integral line Cy0 does not reach any critical point as
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long as s < R−d(y0, X) and Cy0 can at least be parameterized on the interval
[0, R−d(y0, X)]. Hence, we can set T = R−d(y0, X). It has been established
in [32, 18] that:

∀s ∈ [0, L) ,
d

ds+
d (Cy0(s), X) = ‖∇X(Cy0(s))‖

Integrating over the interval [0, T ], we get

d(yT , X)− d(y0, X)

T
≥ µ.

Applying Lemma 1 with x = yT and y = y0 gives d(yT , σ)2 ≤ T 2 + Rad(σ)2

from which we deduce that

(d(y0, X) + µT )2 ≤ d(yT , X)2 ≤ d(yT , σ)2 ≤ T 2 + Rad(σ)2.

Plugging T = R − d(y0, X), setting δ = d(y0,X)
R

, ρ = Rad(σ)
R

and rearranging
this inequality gives us

µ(2− µ)δ2 − 2(1 + µ− µ2)δ + 1− µ2 + ρ2 ≥ 0.

Since δ ≤ 1 we get δ ≤ 1+µ(1−µ)−
√

1−ρ2µ(2−µ)
µ(2−µ) , yielding the result.

The upper bound on hX is an arc of ellipse which tends to an arc of
parabola as µ → 0; see Figure 7, right. Note that since hX(t) ≤ t for all t,
this upper bound is only relevant when under the diagonal. For µ = 1, we
get hX(t) ≤ R −

√
R2 − t2 as in [7]. Equivalently, the graph of hX is below

the circle with radius R and center (0, R).

5.3. Reconstructing shapes with a positive µ-reach
Shapes with a positive µ-reach form a large class of objects, that un-

like shapes with a positive reach, may possess sharp concave edges. Pre-
cisely, for 0 < µ ≤ 1, authors in [17] define the µ-reach of X as rµ(X) =
inf {t > 0 | χX(t) < µ}. The terminology comes from the fact that r1(X)
coincides with the usual reach of X.

Given a shape X whose µ-reach is greater than or equal to R > 0 and a
finite point set P such that dH(P,X) ≤ ε, we compute the largest value of
the ratio ε

R
for which the Čech complex C(P, α) or the Rips complex R(P, α)

provide a topologically correct reconstruction of X for a suitable value of the
parameter α. Computations were realized using a computer algebra system
and details are skipped. In Appendix C, we give all the details when µ = 1,
R = 1 and n = +∞.
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λcech(µ)
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λrips+∞(µ)

µ∗2 µ∗∞

µ

Figure 9: (a) Best ratios ε
R we can get for a correct reconstruction of a shape with a

positive µ-reach either with the Čech or Rips complex for n ∈ {2, 3, 4, 5,+∞}; comparison
with the ratio µ2

5µ2+12 obtained in [17]. (b) and (c) µ∗n and λripsn (1) as functions of n.

Reconstruction with the Čech complex. Note that our assumption rµ(X) ≥ R
is equivalent to χX(t) ≥ µ for all t ∈ (0, R). It follows that a shape X with
rµ(X) ≥ R satisfies the hypothesis of Lemma 12 and therefore has a convexity
defects function hX upper bounded by a function that depends upon R and µ.
Plugging this upper bound in Theorem 9, we obtain that if α+ 3ε ≤ R then
the Čech complex C(P, α) is homotopy equivalent to Xη for all 0 < η < R
whenever the following inequality holds for all t ∈ [α + ε, α + 3ε]:

1 + µ(1− µ)−
√

1− µ(2− µ)
(
t
R

)2
µ(2− µ)

R < t− 3ε.

Eliminating the square root, we can replace the above inequality by Hµ,ε(t) <
0 where Hµ,ε(t) is a polynomial of degree 2 in t. It follows that the above con-
dition holds whenever the absolute difference between the two roots t1µ(ε) ≤
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t2µ(ε) of Hµ,ε(t) is greater than 2ε. When this happens, the admissible val-
ues of α range in the interval Iµ(ε) = [t1µ(ε) − ε, t2µ(ε) − 3ε]. The condition
t2µ(ε)− t1µ(ε) > 2ε can be rewritten as the positivity of a polynomial of degree
2 in ε with two roots, one positive and one negative. Thus, the condition
holds whenever ε is smaller than the positive root whose value divided by R
is:

λcech(µ) =
−3µ+ 3µ2 − 3 +

√
−8µ2 + 4µ3 + 18µ+ 2µ4 + 9 + µ6 − 4µ5

−7µ2 + 22µ+ µ4 − 4µ3 + 1
.

We thus get the following reconstruction theorem:

Theorem 13. Consider a finite set of points P and a compact subset X
whose µ-reach R is positive. If

dH(P,X) ≤ ε < λcech(µ)R

then C(P, α) is homotopy equivalent to Xη for all η ∈ (0, R) and all α ∈ Iµ(ε).

Interestingly, λcech(µ) does not depend on the ambient dimension n. Plot-
ting λcech(µ) as a function of µ (see Figure 9(a)), we observe that it is positive
for all µ ∈ (0, 1] and improves on the upper bound µ2

5µ2+12
established in [17].

Still, for µ = 1, we get λcech(1) = −3+
√
22

13
≈ 0.13 which is not as good as the

value 3−
√

8 ≈ 0.17 obtained in [34].

Reconstruction with the Rips complex. Combining Theorem 10 with β = α
and Lemma 12, we get that if ϑn α + ε ≤ R then the Rips complex R(P, α)
is homotopy equivalent to Xη for all 0 < η < R whenever

1 + µ(1− µ)−
√

1− µ(2− µ)
(
ϑnα+ε
R

)2
µ(2− µ)

R < 2α− ϑnα− 2ε.

As before, we can eliminate the square root, replacing the above inequality by
Hµ(ε, α) < 0 where Hµ(ε, α) is a polynomial of degre 2 in ε and α. Since we
are looking for the greatest value of ε for which Hµ(ε, α) < 0, we may assume
that ∂Hµ(ε,α)

∂α
= 0. Plugging the value of α for which ∂Hµ(ε,α)

∂α
= 0 in Hµ(ε, α),

we get a polynomial of degree 2 in ε whose greatest root εripsn (µ) gives the
supremum of ε for which the above inequality holds. Setting λripsn (µ) = εripsn (µ)

R

and letting αrips
n (µ) be the value of α for which Hµ(εripsn (µ), α) = 0, we get

the following reconstruction theorem:
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Theorem 14. Consider a finite set of points P and a compact subset X
whose µ-reach R is positive. If

dH(P,X) ≤ ε < λripsn (µ)R

then R(P, αrips
n (µ)) is homotopy equivalent to Xη for all η ∈ (0, R).

Using a computer algebra system, we obtain

λripsn (µ) =
−ϑn − ϑn µ+ ϑn µ

2 +
√
−4µ2 + 8µ+ 4ϑn µ2 − 8ϑn µ− ϑn2µ2 + 2ϑn

2µ+ ϑn
2

µ (2− µ) (ϑn + 2)

Plotting λripsn (µ) as a function of µ, we observe that the ratio is only pos-
itive on a subinterval (µ∗n, 1] of (0, 1]; see Figure 9(a). Hence, we can only
guarantee that Rips complexes provide a correct reconstruction for shapes
with a positive µ-reach when µ > µ∗n. In Figure 9(b), we plotted µ∗n as
a function of n. µ∗n increases with n and we were able to prove using a
computer algebra system that µ∗n tends to

√
2
√

2− 2 ≈ 0.91 as n → +∞.
In Figure 9(c), we plotted λripsn (1) as a function of n. It decreases with n

and similarly, we proved that limn→+∞ λ
rips
n (1) =

2
√

2−
√
2−
√
2

2+
√
2

≈ 0.034 and

limn→+∞
αrips
n (1)
R

= 1−
√
2
2

+
(

1− 3
√
2

4

)√
2−
√

2 ≈ 0.25.

6. Conclusion

Our work shows that Rips complexes can indeed provide topologically
correct approximations of shapes.

An appealing aspect of Rips complexes is that they can be defined in
metric spaces. Indeed, all we need is a notion of distances between points.
Thus, it would be tempting to extend our results to metric spaces as well
such as Riemannian manifolds, Lp spaces or abstract metric spaces. A glance
at the proof of our main result (Theorem 7) reveals the centrality of Jung’s
Theorem that relates the diameter and radius of any subset of an Euclidean
space. A first step towards such an extension would be to replace Jung’s
theorem by an axiom in the considered metric space. For instance, in L∞

spaces the diameter of a set is always twice its radius. Hence, Čech and Rips
complexes coincide and Theorem 7 degenerates into a trivial form. Besides
replacing Jung’s theorem by an axiom, we would also need to adapt our
definitions of convexity defects functions. The definition of cX is purely
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metric. The definition of hX requires, besides a metric, a notion of (local)
convex hull which can be defined from geodesics for a large class of metric
spaces (see the definition of complete length spaces in [28]).

Lemma 17 says that the hypotheses of Theorem 7 are stable under small
metric perturbations. This seems to indicate that our relaxed definition of
quasi Rips complexes (unlike the usual notion of Rips complexes) should
allow us to apply Theorem 7 in the context of Gromov-Hausdorff distances.

Another natural extension would be to consider local measures of con-
vexity defects and define sampling densities adapted to the local geometry
of the sampled set in the spirit of [2].
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Figure 10: Various point sets P on the left and corresponding convexity defects function
cP on the right.
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Appendix A. Smallest enclosing balls

In this appendix, we establish the existence and uniqueness of the smallest
ball enclosing a non-empty bounded set σ of Rn. We then prove that the
radius and center of this smallest enclosing ball are stable under perturbation
of σ.

Lemma 15. The smallest ball enclosing a non-empty bounded set of Rn exists
and is unique.

Proof. Let σ be a non-empty bounded set of Rn. We first establish the
existence of a smallest ball enclosing σ. Given a point y ∈ Rn and a real
number s ≥ 0, we first prove that the set B(y, s) of closed balls passing
through y and with radius s or less is compact. Indeed, representing a closed
ball with center z and radius r by point (z, r) in Rn+1, we can write

B(y, s) = {(z, r) ∈ Rn+1 | ‖z − y‖ ≤ r ≤ s},

which is closed by definition and bounded since for all balls (z0, r0) and
(z1, r1) in B(y, s), we have ‖z0 − z1‖+ |r0 − r1| ≤ 3s. The set of closed balls
containing σ and whose radii are smaller than or equal to the diameter of σ
is

B(σ) =
⋂
y∈σ

B(y,Diam(σ)).

This set is non-empty and compact and therefore, the continuous map (z, r) 7→
r on B(σ) is bounded below and attains its infimum. The uniqueness is easy
to establish by contradiction, as explained in [35].

Lemma 16. For every non-empty bounded subsets σ and σ′ of Rn such
that dH(σ, σ′) ≤ ε, we have |Rad(σ) − Rad(σ′)| ≤ ε and ‖Center(σ) −
Center(σ′)‖ ≤

√
2εRad(σ) + ε2.

Proof. Writing B for the smallest ball enclosing σ, we have σ′ ⊂ σε ⊂ Bε,
showing that Rad(σ′) ≤ Rad(σ) + ε. For the second part of the lemma,
set z = Center(σ), z′ = Center(σ′), r = Rad(σ) and r′ = Rad(σ′); see
Figure A.11. Suppose z 6= z′ for otherwise the result is clear and consider
the hyperplane H passing through z and orthogonal to the segment zz′. Let
ξ = σ∩∂B. By construction, ξ is closed and has the same smallest enclosing
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Figure A.11: Left: The bound on ‖Center(σ)−Center(σ′)‖ in Lemma 16 is tight. Right:
Notation for the proof of Lemma 16.

ball as σ. Thus, z ∈ Hull(ξ) and the closed half-space H+ that H bounds
and which avoids z′ intersects ξ. Let p be a point in this intersection. By
choice of p in H+, the triangle pzz′ is obtuse at vertex z and ‖z′ − p‖2 ≥
‖z − p‖2 + ‖z′ − z‖2. Using ‖z − p‖ = r and ‖z′ − p‖ ≤ r′ + ε we obtain
‖z′ − z‖2 ≤ (r′ + ε)2 − r2. Interchanging the roles of σ and σ′ yields:

‖z′ − z‖2 ≤ min{(r′ + ε)2 − r2, (r + ε)2 − r′2}.

Note that (r′ + ε)2 − r2 ≤ (r + ε)2 − r′2 if and only if r ≥ r′. Considering in
turn each of the two cases r ≤ r′ and r′ ≤ r, we get the desired inequality.

Appendix B. Hypotheses of Theorem 7 are stable

In this appendix, we establish the stability of hypotheses of Theorem 7
under small perturbations of the point set P . Given a point set P ⊂ Rn, we
say that a map f : P → Rn is an ε-small perturbation of P if f is injective
and ‖p − f(p)‖ ≤ ε for all points p ∈ P . Given a simplicial complex K, we
define the simplicial complex f(K) = {f(σ) | σ ∈ K}.

Lemma 17. Let P ⊂ Rn be a finite set of points. Consider two real numbers
β ≥ α ≥ 0 such that

cP (ϑn β) < 2α− ϑn β

and suppose moreover that α is an inert value of P . Then, there exist ε > 0
and β′ > β such that for all ε-small perturbations f of P , we have:

(i) cf(P )(ϑn β
′) < 2α− ϑn β

′;
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(ii) C(f(P ), α) = f(C(P, α));
(iii) if FlagG is an (α, β)-quasi Rips complex of P , then Flag f(G) is an

(α, β′)-quasi Rips complex of f(P ).

Proof. Let us establish (i). For this, set t = ϑn β and define t̄ = min{Rad(σ) |
∅ 6= σ ⊂ P and Rad(σ) > t}. By construction, t̄ > t. Lemma 4 ensures that
for all subsets P ′ ⊂ Rn within Hausdorff distance ε from P and for all t′ ≥ 0,
the following implication holds:

cP ′(t′) < cP (t′ + ε) +
√

2t′ε+ ε2 + ε.

By assumption, we have 2α− t− cP (t) > 0. By choosing ε > 0 small enough,
we can always find t′ > t such that (1) t′+ ε < t̄, (2) 2α− t′− cP (t) > 0 and
(3)
√

2t′ε+ ε2 + ε ≤ 2α−t′−cP (t)
2

. Since cP (t′ + ε) = cP (t), it follows that

cP ′(t′) < cP (t) +
2α− t′ − cP (t)

2
< 2α− t′

and (i) is proved with β′ = t′/ ϑn. By choosing ε > 0 small enough, we can
always assume that in addition to conditions (1), (2) and (3), we have (4)
ε < β′ − β and (5) Rad(σ) /∈ [α − ε, α + ε] for all ∅ 6= σ ⊂ P . Let f be an
ε-small perturbation of P . Using Lemma 16 and condition (5), we get

σ ∈ C(P, α) ⇔ Rad(σ) ≤ α ⇔ Rad(σ) ≤ α− ε
⇒ Rad(f(σ)) ≤ α ⇔ f(σ) ∈ C(f(P ), α)

and

f(σ) ∈ C(f(P ), α) ⇔ Rad(f(σ)) ≤ α ⇒ Rad(σ) ≤ α + ε

⇔ Rad(σ) ≤ α ⇔ σ ∈ C(P, α),

yielding (ii). Consider a graph G whose flag complex is an (α, β)-quasi
complex and let p and q be two points of P such that ‖f(p) − f(q)‖ ≤ 2α.
We have ‖p − q‖ ≤ 2α + 2ε and therefore using condition (5) ‖p − q‖ ≤
2α. It follows that the edge {p, q} belongs to G and consequently the edge
{f(p), f(q)} belongs to f(G). Similarly, suppose ‖f(p) − f(q)‖ > 2β′. This
implies that ‖p− q‖ > 2β′− 2ε > 2β by condition (4) and therefore the edge
{p, q} does not belong to G. Hence, the edge {f(p), f(q)} does not belong
to f(G), showing (iii).
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Appendix C. Reconstructing shapes with a positive reach

In this appendix, we redo computations of Section 5.3, setting µ = 1,
R = 1, n = +∞. That is, we consider a shape X whose reach is greater than
or equal to 1 and a finite point set P such that dH(P,X) ≤ ε.

Reconstruction with the Čech complex. Combining Theorem 9 and Lemma
12, we get that the Čech complex C(P, α) is homotopy equivalent to Xη for
0 < η < 1 whenever

1−
√

1− t2 < t− 3ε, ∀t ∈ [α + ε, α + 3ε]

which can be rewritten as

2t2 − 2t(1 + 3ε) + 9ε2 + 6ε < 0, ∀t ∈ [α + ε, α + 3ε].

This condition holds whenever the absolute difference between the two roots
t1(ε) ≤ t2(ε) of the polynomial in t is greater than 2ε, that is, whenever
0 > 13ε2 + 6ε− 1. The supremum of ε for which the previous equation holds
is λcech(1) = −3+

√
22

13
≈ 0.13. For ε < λcech(1), the admissible values of α

range in the interval I1(ε) = [t1(ε) − ε, t2(ε) − 3ε]. Plugging the expression
of the roots into the two endpoints of the interval, we get

I1(ε) = [
1

2
+ ε−

√
1− 6ε− 9ε2

2
,
1

2
− 3ε

2
+

√
1− 6ε− 9ε2

2
].

Note that when epsilon tends to λcech(1), the interval I1(ε) tends to the
singleton 8

13
−
√
22
26
≈ 0.44.

Reconstruction with the Rips complex. Combining Theorem 10 and Lemma
12, we get that the Rips complex R(P, α) is homotopy equivalent to Xη for
all 0 < η < R whenever

1−
√

1− (
√

2α + ε)2 < 2α−
√

2α− 2ε.

which we can rewrote as

5ε2 + 4(2−
√

2)α2 − 2(4− 3
√

2)αε+ 4ε− 2(2−
√

2)α < 0

Since we are looking for the greatest value of ε for which the above equation
holds, we may assume that the partial derivative of the left side with respect
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to α vanishes, which gives 4(2−
√

2)α− (4−3
√

2)ε− (2−
√

2) = 0. Plugging
α = ((1−

√
2)ε+ 1)/4 in the above equation, we get

(10 + 7
√

2)ε2 + (8 + 6
√

2)ε+
√

2− 2 < 0

The left side is a polynomial of degree 2 in ε whose greatest root εrips+∞(1) =
2
√

2−
√
2−
√
2

2+
√
2

≈ 0.034 gives the supremum of ε for which the above inequality
holds. The corresponding value of α is

αrips
+∞(1) = 1−

√
2

2
+

(
1− 3

√
2

4

)√
2−
√

2 ≈ 0.25.
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