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Abstract

Given as input a point set S that samples a shapeA, the condition required for inferring Betti numbers
of A from S in polynomial time is much weaker than the conditions required by any known polynomial
time algorithm for producing a topologically correct approximation of A from S . Under the former
condition which we call the weak precondition, we investigate the question whether a polynomial time
algorithm for reconstruction exists. As a first step, we provide an algorithm which outputs an approx-
imation of the shape with the correct Betti numbers under a slightly stronger condition than the weak
precondition. Unfortunately, even though our algorithm terminates, its time complexity is unbounded.
We then identify at the heart of our algorithm a test which requires answering the following question:
given two 2-dimensional simplicial complexes L ⊂ K, does there exist a simplicial complex contain-
ing L and contained in K which realizes the persistent homology of L into K? We call this problem
the homological simplification of the pair (K,L) and prove that this problem is NP-complete, using a
reduction from 3SAT.

1 Introduction

Previous works. The problem of reconstructing shapes from point clouds has been well studied in com-
puter graphics, computational geometry, machine learning, and other areas. Reconstruction methods aim at
building an approximation of a shape from a set of data points that sample it. The resulting object may then
be measured or used for certain tasks such as rendering, storing, searching in a data base and so on. In this
context, it is desirable that the result of the reconstruction reflects the topology of the original shape. During
the past two decades, a lot of research went into finding sampling conditions which guarantee a topologi-
cally correct reconstruction. First sampling conditions were assuming shapes to be compact smooth surfaces
embedded in the Euclidean three-dimensional space and data points to be noise-free [5, 1, 3, 9, 19, 4]. Since
then, much effort has been put into weakening sampling conditions so that a wider class of shapes can be
reconstructed from sparser and less accurate samples.

An important step has been to allow noise in the sample. Maybe one of the simplest noise model sup-
poses that each point of the sample lies within some distance of the sampled shape (the sample is accurate)
and each point of the sampled shape lies within some distance of a sample point (the sample is dense).
When both distances are bounded by the same value ε, we say that the Hausdorff distance between the
shape and the sample is upper bounded by ε. First sampling conditions were assuming the Hausdorff dis-
tance to be less than a fraction the reach of the shape [27]. The reach of A is the infimum of distances
∗This work is partially supported by ANR Project GIGA ANR-09-BLAN-0331-01.
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between points in A and points in its medial axis. Unfortunately, the reach vanishes for shapes with sharp
concave edges and therefore is not suitable for expressing sampling conditions for non-smooth manifolds or
stratified objects. To deal with this problem, Boissonnat and Oudot in [10] considered Lipschitz manifolds
while Chazal, Cohen-Steiner and Lieutier in [11] considered a large class of non-smooth compact sets called
sets with a positive µ-reach. The µ-reach of A is the infimum of distances between points in A and points
in its µ-medial axis which for µ ∈ (0, 1] is a stable subset of the medial axis defined in [11]. More recently,
authors in [8] proved under sampling conditions weaker than the one in [11] that an r-offset of the sample
provides a topologically correct reconstruction of any shape with a positive µ-reach for some suitable value
of the parameter r. It should be noted that this reconstruction can be computed efficiently (i.e. in polynomial
time). In this paper, we ask the following question: can we weaken further these sampling conditions and
still be able to construct a topologically correct reconstruction of a shape from a sample of it?

The starting point of this work was the observation made in [16] that Betti numbers of a shape A can be
derived efficiently from the point set S, as long as its Hausdorff distance to A remains smaller than a fourth
the weak feature size of A. The weak feature size is another notion of feature size equal to the infimum
of distances between points in A and critical points of the distance function to A. As critical points form
a subset of the µ-medial axis, the weak feature size is larger than the µ-reach for all values of µ ∈ (0, 1].
Hence, conditions for computing efficiently the Betti numbers of a shapeA are significantly milder than the
conditions known for building efficiently a topologically correct approximation of A. We refer to the mild
sampling condition sufficient for inferring Betti numbers as the weak sampling condition. This condition is
tight.

Optimal reconstruction. We call any algorithm that would be able to produce a topologically correct
reconstruction under the weak sampling condition an optimal reconstruction algorithm. We explain in Sec-
tion 3 that, even though no realistic version of an optimal reconstruction algorithm is known today, the weak
sampling condition ensures that the sample contains in principle enough information on the sampled shape
to produce without ambiguity a topologically correct reconstruction of it. Starting from this observation, we
give in Section 4 a “naive” algorithm which, at the expense of not being efficient, produces a reconstruction
with the correct Betti numbers under conditions slightly stronger than the weak sampling condition.

The main question we pursue is: can we do better? More precisely, does there exist a polynomial time
optimal reconstruction algorithm? This problem is closely related to the persistence-sensitive simplification
of real-valued functions, whose goal is to filter out topological noise in sub-level sets. Indeed, reconstruc-
tion can be thought of as the simplification of distance functions to the samples. For functions defined on
triangulated 2-manifolds, polynomial algorithms have been devised [22, 6, 25]. Still, persistence-sensitive
simplification of functions in higher dimension remains elusive.

Homological simplification. In Section 5, we focus on the test at the heart of our naive algorithm. This
test requires to answer the following question: given two 2-dimensional simplicial complexes L ⊂ K, does
there exist a simplicial complex X containing L and contained in K such that the maps induced by the
inclusions L ↪→ X and X ↪→ K on all modulo 2 homology groups are respectively surjective and injective.
We call this problem the homological simplification of the pair (K,L) and prove that it is NP-complete.
Although this result is negative, we believe that it casts new light on the problem of finding a topologically
correct reconstruction under weak sampling conditions and opens further research tracks as mentioned in
Section 6.
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Outline. Section 2 presents the necessary background. Section 3 defines what we mean by an optimal
reconstruction algorithm. Section 4 presents an algorithm which can be regarded as an approximation of an
optimal reconstruction algorithm. This algorithm requires to be able to solve a problem, which we prove is
NP-hard in Section 5. Section 6 concludes the paper.

2 Background

The goal of this section is to recall three closely related concepts useful for expressing sampling conditions
in shape reconstruction. Given a shape A, we define the reach r1(A), the µ-reach rµ(A) for any µ ∈ (0, 1]
and the weak feature size wfs(A). As we shall see, these quantities are related by the following inequality:
r1(A) ≤ rµ(A) ≤ wfs(A). All three concepts can be derived from the critical function of the shape. This
leads us to introduce the critical function, which requires first to define the norm of the gradient to the
distance function.

The distance function to a compact set plays a central role in several recent works related to topologically
guaranteed reconstruction [24, 20, 11]. For a compact set A ⊂ RN , the distance function dA : RN → R+

maps every point q ∈ RN to

dA(q) = min
a∈A
‖a− q‖.

Although not differentiable, dA admits several notions of extended gradient [14, 24]. For our purpose, we
shall introduce a real valued function ΨA : RN \ A → [0, 1] which coincides with the norm of the gradient
defined in [24]. Let d

dt+ (·)|t=0 denote the right derivative with respect to the variable t at t = 0. For
q ∈ RN \ A and v ∈ SN−1, one can check [24] that the quantity d

dt+dA(q + tv)|t=0 is well-defined and
belongs to [−1, 1]. We define ΨA as:

ΨA(q) = max

{
0, sup
v∈SN−1

d
dt+

dA(q + tv)|t=0

}
.

Roughly speaking, ΨA(q) quantifies at which maximal speed the distance function to A can increase in a
neighborhood of q. We are now ready to recall the definition of the critical function χA introduced in [11].
The critical function maps every positive real number ρ > 0 to the infimum of ΨA over the set of points at
distance ρ from A:

χA(ρ) = inf
dA(q)=ρ

ΨA(q).

The critical function is lower semi-continuous [11] and allows to define two quantities, the µ-reach and the
weak feature size of A denoted respectively rµ(A) and wfs(A):

rµ(A) = inf {ρ > 0, χA(ρ) < µ} ,
wfs(A) = inf {ρ > 0, χA(ρ) = 0} .

The reach of A is equal to r1(A). From the definition, it is clear that r1(A) ≤ rµ(A) ≤ wfs(A) for any
µ ∈ (0, 1]. Figure 1 shows the critical function χA for a simple shape A in the Euclidean plane, which
consists of the points at distance R from a full rectangle of width ` and length L.

To shed light on these notions, it is useful to make some connections with the medial axis. The medial
axis of A is the set of points q /∈ A which have at least two closest points in A. Alternatively, it is the
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Figure 1: Left: the shape A is the outer closed thick curve and its medial axis consists of the five thin inner
segments. Right: critical function χA. We have rµ(A) = R for µ > 1√
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locus of points q for which ΨA(q) < 1. Any point q for which ΨA(q) = 0 is called a critical point of the
distance function and lies on the medial axis. The reach is the minimum of distances between points in A
and points in its medial axis. The weak feature size is the minimum of distances between points in A and
critical points.

For instance, the function ΨA of the shape A depicted in Figure 1 evaluates to 0 on the horizontal line
of the medial axis which constitutes the only critical points in this case, evaluates to 1√

2
on the other points

of the medial axis and evaluates to 1 on all points of the plane that neither belong toA nor to its medial axis.
For completeness, we also recall the related notion of local feature size, introduced by Amenta [2] for

reconstructing smooth shapes. The local feature size is a real-valued function which maps every point of
A to its distance to the medial axis. Notice that the local feature size and its infimum, the reach, vanish on
non-smooth objects as soon as they contain a sharp concave corner or edge. For this reason, we will focus
in Section 3.2 on sampling conditions based on the weak feature size and µ-reaches which apply to a large
class of non-smooth shapes.

Given η > 0, the η-offset of A is the set of points at distance η or less from A, Aη = d−1A ([0, η]). As
in Morse theory, topological changes in offsets occur only at critical values. More precisely, as stated in
[23, 13]:

Lemma 1 (Topological Stability of Offsets). If 0 < x < y < wfs(A), then the inclusion map Ax ↪→ Ay is
a homotopy equivalence.

3 The quest for an optimal reconstruction algorithm

Section 3.1 contains our definition of a (homological) faithful reconstruction, which formalizes what we
mean by a “topologically correct reconstruction”. Section 3.2 compares two algorithms for inferring infor-
mation on a shape A known through a finite sample S. The first algorithm outputs the Betti numbers of A
and the second algorithm outputs a faithful approximation of A. We then define in Section 3.3 an optimal
reconstruction algorithm as one that would produce the output of the second algorithm with the input and
precondition of the first algorithm.

3.1 Faithful reconstructions

To prepare our definition of an optimal reconstruction algorithm, we first introduce in this section the notions
of faithful reconstruction and faithful homological reconstruction. For the second notion, we shall consider
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a fixed field F and take coefficients in F for homology [26, Chapter 1]. Hence, the property of being a
faithful homological reconstruction will depend on the choice of F .

Definition 1 (Faithful (homological) reconstruction). We say that a subsetR ⊂ RN is a faithful reconstruc-
tion of the compact set A ⊂ RN if there exist real numbers x, y such that 0 < x < y < wfs(A) and the
following two properties hold:

• Ax ⊂ R ⊂ Ay

• the inclusion maps Ax ↪→ R andR ↪→ Ay are homotopy equivalences.

We say thatR is a faithful homological reconstruction when the last condition is relaxed to:

• the inclusion maps Ax ↪→ R andR ↪→ Ay induce isomorphisms on all homology groups.

For any 0 < η < wfs(A), the η-offset of A is clearly a faithful reconstruction of A. A faithful recon-
struction is always a faithful homological reconstruction. As expected, the converse is not true: a punctured
Poincaré sphere nested between a point and a ball is an example where inclusions are not homotopy equiv-
alences but yet induce isomorphisms on homology groups [15]. Interestingly, this example does not embed
in R3.

Note that in the above definition, if one of the two inclusion maps Ax ↪→ R orR ↪→ Ay is a homotopy
equivalence, so is the other one. Indeed, by Lemma 1, Ax ↪→ Ay is a homotopy equivalence and we can
conclude by applying Lemma 2 below. A similar statement can be made for the second part of the definition.

Lemma 2. Consider three nested spaces A ⊂ B ⊂ C. If two of the three inclusions i : A ↪→ B, j : B ↪→ C
and k = j ◦ i : A ↪→ C are homotopy equivalences, then the third one is a homotopy equivalence also.

Proof. Let us write f ' g if the two maps f and g are homotopic. We consider the three cases in turn.
If i and j are homotopy equivalences with homotopy inverses i′ and j′ respectively, then i′ ◦ j′ is clearly
a homotopy inverse of k = j ◦ i. If j and k are homotopy equivalences with homotopy inverses j′ and k′

respectively, then using k = j ◦ i we get that j′ ◦ k = j′ ◦ j ◦ i ' i and k′ ◦ j is a homotopy inverse of
i ' j′ ◦ k. Similarly, if i and k are homotopy equivalences with homotopy inverses i′ and k′ respectively,
then using k = j ◦ i we get that k ◦ i′ = j ◦ i ◦ i′ ' j and i ◦ k′ is a homotopic inverse of j ' k ◦ i′.

The following observation will be useful: If x and y are two real numbers such thatAx ⊂ R ⊂ Ay with
0 < x < y < wfs(A), then X is a faithful homological reconstruction of A if and only if Ax ↪→ R induces
isomorphisms on all homology groups. This is a direct consequence of Lemmas 1 and 2.

3.2 Comparing existing algorithms

In this section, we present two algorithms and compare theirs inputs, preconditions and outputs. Specifically,
given as input a finite sample S of an unknown shapeA, the first algorithm recovers the Betti numbers ofA
and the second algorithm constructs a faithful approximation of A. Each algorithm relies on a key theorem
that states sampling conditions ensuring correctness. Both algorithms are polynomial in the size of the
sample. Recall that the Hausdorff distance between two compact sets A and B of RN is defined by:

dH(A,B) = ‖dB − dA‖∞ = sup
q∈RN

|dB(q)− dA(q)|.
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Algorithm for computing Betti numbers. A powerful tool for inferring Betti numbers from geometric
approximations is topological persistence [21]. Theorem 3 below is a corollary of the Persistence Stability
Theorem [16] and can also be derived by flow based arguments [13]. Before stating it, we need the following
definition.

Definition 2 (Persistent Betti numbers). Let A ⊂ RN be a compact set and let 0 ≤ x ≤ y. The p-th
(x, y)-persistent Betti number of A is the rank of the homomorphism induced by inclusion Ax ↪→ Ay:

βx,yp (A) = rank (Hp(Ax) ↪→ Hp(Ay))

It is worth noting that the (x, y)-persistent Betti numbers are finite whenever x < y [18].

Theorem 3 (Homology Inference [16, 13]). Let A and S be two compact subsets of RN and suppose there
exists a real number α > 0 such that

dH(S,A) < α <
1

4
wfs(A)

Then, βp(A) = βα,3αp (S).

The above theorem leads immediately to a polynomial time algorithm for inferring Betti numbers of a
shape A when the sample S of A is finite. Indeed, writing Kα(S) for the α-complex of S, the persistent
Betti numbers can be expressed as

βα,3αp (S) = rank (Hp(Kα(S)) ↪→ Hp(K3α(S))) .

In particular, they can be computed in time cubic the size of K3α(S). Since for a fixed dimension, the
size of α-complexes is polynomial in the number of vertices, it follows that βp(A) can also be computed in
polynomial time the size of the sample.

Algorithm for computing a faithful reconstruction. Suppose we want to reconstruct a shape A from
a sample S. A standard way to do this is to output an r-offset of S. In practice, this computation can be
replaced by the computation of Kr(S), which shares the same homotopy type. Both computations can be
done in polynomial time if the sample is finite. Assuming the shape has a positive µ-reach, it has been
proved in [11, 8] that if the Hausdorff distance between A and S is less than a fraction the µ-reach of A,
then this method provides indeed a faithful reconstruction of A for some suitable value of the parameter r.
Precisely, setting λ(µ) = µ2

5µ2+12
and Iµ(α) = {4α

µ2
}, we have:

Theorem 4 (Reconstruction Theorem [11, 8]). Let A and S be two compact subsets of RN and suppose
there exists two real numbers α > 0 and µ ∈ (0, 1] such that

dH(S,A) < α < λ(µ)rµ(A)

Then, Sr is a faithful reconstruction of A for all r ∈ Iµ(α).

The same theorem has been established in [8] but with a larger constant λ(µ), a different interval of
admissible values Iµ(α) and different proof techniques. In both cases, λ(µ) < 1

4 and limµ→0 λ(µ) = 0.
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Table 1: Input, precondition and output of two polynomial time algorithms derived from Theorem 3 and
Theorem 4. The notation “∃A” stands for “there exists a compact set A ⊂ RN”. S designates a finite set of
RN . α and µ designate two real numbers with α > 0 and µ ∈ (0, 1].

Input Precondition Output

(S, α) ∃A, dH(S,A) < α < 1
4 wfs(A) Betti numbers of A

(S, α, µ) ∃A, dH(S,A) < α < λ(µ)rµ(A) a faithful reconstruction of A

Comparing sampling conditions. Table 1 summarizes inputs, preconditions and outputs of the two poly-
nomial time algorithms described above and inspired by Theorems 3 and 4. Note that the precondition of the
first algorithm is significantly weaker than the precondition of the second one especially when µ is small be-
cause rµ(A) ≤ wfs(A), λ(µ) < 1

4 and λ(µ) tends to zero as µ→ 0. The gap between the two preconditions
leads to the question whether the precondition of the second algorithm can be weakened and replaced by
the precondition of the first algorithm. This question motivates our definition of an optimal reconstruction
algorithm in the next section.

3.3 Optimal reconstruction algorithms

Note that the precondition required by the first algorithm which we call the weak precondition is equivalent
to saying that the following set is non-empty:

W (S, α) =

{
A compact set of RN | dH(S,A) < α <

1

4
wfs(A)

}
6= ∅.

By Theorem 3, all shapes in W (S, α) share the same Betti numbers and the first algorithm returns the Betti
numbers of any A ∈ W (S, α). We claim that if the input (S, α) of the first algorithm satisfies the weak
precondition, that is, if W (S, α) 6= ∅, then the output of the second algorithm is completely determined as
well. To explain this, let us first recall the following theorem from [13]:

Theorem 5 ([13]). Let A and B be two compact subsets of RN and α > 0 a real number such that

dH(A,B) < 2α <
1

2
min {wfs(A), wfs(B)}

Then, B2α is a faithful reconstruction of A.

We provide below a quick proof.

Proof. Consider the following diagram in which arrows represent inclusion maps between spaces:

A0 A1 A2

B0 B1 B2
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It is not too hard to prove that if the horizontal arrows are homotopy equivalences, then the other arrows are
homotopy equivalences also. Note that we can always find δ > 0 such that dH(A,B) < 2α − δ. Setting
X0 = X δ, X1 = X 2α and X2 = X 4α−δ for X ∈ {A,B}, we get immediately that B2α is a faithful
reconstruction of A.

Suppose A and B both belong to W (S, α). Applying a triangular inequality, we get that A, B and α
fulfill conditions of Theorem 5 and therefore, B2α is a faithful reconstruction of A. Hence, any 2α-offset of
a shape B ∈ W (S, α) is a faithful reconstruction of any shape A ∈ W (S, α). For this reason, we say that
if the pair (S, α) satisfies the weak precondition, then it carries in principle enough information about the
unknown shape A to determine without ambiguity a faithful reconstruction of it.

Furthermore, the weak precondition is tight. To explain what this means, let us introduce the set

W (S, α, η) =

{
A compact set of RN | dH(S,A) < α <

1

4
(wfs(A)− η)

}
.

For negative values of η, the set W (S, α, η) is a superset of W (S, α). We claim that for any η < 0,
W (S, α, η) may contain objects that do not have the same homology. To construct such an example,
consider the two shapes O and U described in [13] and the sample S pictured on Figure 2. By con-
struction, we have wfs(O) = 2, wfs(U) = +∞ and adjust the angle between the two bars in shape U
so that dH(S,O) = dH(S,U)< 1

2 −
η
8 for some η < 0. Both O and U belong to W (S, 12 −

η
4 , η) but

β1(O) 6= β1(U). Therefore, the weak precondition is the weakest amongst the preconditions expressed in
terms of Hausdorff distance and critical functions that allows to retrieve a faithful reconstruction without
ambiguity.

U S O

Figure 2: The angle between the two bars in shape U is adjusted such that dH(S,O) = dH(S,U)< 1
2 −

η
8 .

We are now ready to define what we mean by an optimal reconstruction algorithm.

Definition 3 (Optimal reconstruction algorithm). We call optimal reconstruction algorithm any algorithm
that takes as input a pair (S, α) satisfying the weak precondition, that is, such that W (S, α) 6= ∅, and
outputs a set which is a faithful reconstruction of all the shapes in W (S, α).

The main question motivating this work is whether there exists a polynomial time optimal reconstruction
algorithm. Given as input a pair (S, α) satisfying the weak precondition, the previous discussion suggests
the following strategy for computing a faithful reconstruction: enumerate all compact sets in RN and return
the 2α-offset of the first compact set B that belongs to W (S, α). Indeed, by Theorem 5, we know that the
output B2α is a faithful reconstruction of every shapeA ∈W (S, α). Of course, this procedure is unrealistic
and the goal of the next section is to present an effective version of it. To achieve this goal, we will replace
the search of a faithful reconstruction by the search of a faithful homological reconstruction and strengthen
slightly the weak precondition, assuming instead that W (S, α, η) 6= ∅ for some arbitrarily small η > 0.
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4 Naive algorithms for homological reconstruction

In this section, we describe a naive algorithm that outputs a faithful homological reconstruction under con-
ditions slightly stronger than the weak precondition. We call it “naive” since it has an unbounded time
complexity. The idea is to explore a set of cubical sets, refining the size of the cubes until we find a solution.

We proceed in four steps. Given a set S that samples a shapeA, we first prove the existence of a cubical
set that can be derived from the sample S and which is a faithful reconstruction of the shape A. Second,
we discuss a simple test to decide whether a cubical set is a faithful homological reconstruction of a shape.
Based on this test, we then give a reconstruction algorithm for shapes with a positive µ-reach (NAIVE_1)
and finally, derive a reconstruction algorithm for shapes with a lower bounded weak feature size (NAIVE_2).

4.1 Cubical sets

Figure 3: Left: the cubical set (in pink) is nested between two offsets (in light purple) of the V-shaped black
curve and is a faithful reconstruction of it. Right: two offsets S l and Sk of the sample.

Let us start with some definitions. An ε-voxel is a closed cube with edge length ε and whose vertices
belong to the lattice εZN . We call any finite union of ε-voxels an ε-cubical set. Let S ⊂ RN be a compact
set and consider three real numbers α > 0, µ ∈ (0, 1] and η > 0. The goal of this section is to prove the
existence of cubical sets that are faithful reconstructions of all shapes in the set

W (S, α, η, µ) =

{
A compact set of RN | dH(S,A) < α <

1

4
(rµ(A)− η)

}
.

We proceed in three phases. First, we recall a result from [7] that states the existence of cubical sets that are
faithful reconstructions of shapes with a positive reach (Lemma 6). We then deduce the existence of cubical
sets that are faithful reconstructions of shapes with a positive µ-reach (Lemma 7) before proving the same
for shapes in W (S, α, η, µ) (Lemma 8).

Lemma 6 (Corollary 3 in [7]). For dN = 1
40N3d

√
Ne and for all compact sets A ⊂ RN with reach greater

than ρ > 0, there exists a (dNρ)-cubical set X such thatA ⊂ X ⊂ Aρ and the inclusion mapsA ↪→ X and
X ↪→ Aρ are homotopy equivalences.

Using the above lemma, we derive the existence of cubical sets which are faithful reconstructions of
shapes with a positive µ-reach.
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Lemma 7. There exists a positive constant cN depending only upon the ambient dimension N such that the
following property holds: for all real numbers x, y and µ ∈ (0, 1] and all compact sets A ⊂ RN satisfying
rµ(A) > y > x > 0, there exists a (cNµ(y − x))-cubical set X such that Ax ⊂ X ⊂ Ay and the inclusion
maps Ax ↪→ X and X ↪→ Ay are homotopy equivalences. In particular, the cubical set X is a faithful
reconstruction of A (see Figure 3, left).

Proof. The proof consists in extending Lemma 6 to the situation where compact sets have a positive µ-reach
with the constant cN = dN

2 . The key ingredient in the proof is a result in [12] which says that if we dilate
a shape with a positive µ-reach and then erode it again, we can adjust the parameters of the dilation and
erosion in such a way that the resulting shape has a positive reach. Precisely, given a set Y ⊂ RN , we
denote respectively by Y and Yc the closure and the complement of Y . For any compact set Y ⊂ RN and
any real number ρ > 0, let Y−ρ = ((Yc)ρ)c and consider the set B = (Ay)−µ(y−x). We know from [12]
that the reach of B is greater than or equal to µ(y−x) and the inclusion maps corresponding to the sequence

Ax ⊂ B ⊂ Ay

are homotopy equivalences. We can now apply Lemma 6 to the setB whose reach is greater than ρ = µ(y−x)
2 .

This gives the existence of a (cNµ(y − x))-cubical set X such that:

B ⊂ X ⊂ Bρ

and the maps corresponding to inclusions are homotopy equivalences. Using Bρ = ((Ay)−2ρ)ρ ⊂ Ay, we
get the sequence of inclusions

Ax ⊂ X ⊂ Ay.

in which the inclusion mapAx ↪→ X is a homotopy equivalence. By Lemma 2,X is a faithful reconstruction
of A.

Unfortunately, the shape is only known through a finite set of points that sample it. Nonetheless, next
lemma states that we can deduce from the mere knowledge of the sample a faithful reconstruction of the
underlying shape which is a cubical set. Recall that Vε(Y) denotes the union of ε-voxels that intersect the
set Y ⊂ RN .

Lemma 8. Let α, η > 0 and µ ∈ (0, 1] be real numbers and let A and S be compact subsets of RN such
that dH(S,A) < α. Then, for:

ε =
η

4
√
N + 2

cNµ

, l =
η

2
+ α, k = η + 3α− ε

√
N,

we have the sequence of inclusions:

A
η
2 ⊂ Vε(S l) ⊂ A

3η
4
+2α ⊂ Vε(Sk) ⊂ Aη+4α.

Furthermore, if we assume dH(S,A) < α < 1
4 (rµ(A)− η), there exists an ε-cubical set X such that:

A
η
2 ⊂ Vε(S l) ⊂ X ⊂ Vε(Sk) ⊂ Aη+4α

and the inclusion maps A
η
2 ↪→ X and X ↪→ A4α+η are homotopy equivalences. In particular, X is a

faithful reconstruction of A.
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Proof. Note that for all compact sets Y ⊂ RN , we have Y ⊂ Vε(Y) ⊂ Yε
√
N . It follows that for all t ≥ 0,

we have the following sequence of inclusions:

At ⊂ St+α ⊂ Vε(St+α) ⊂ St+α+ε
√
N ⊂ At+2α+ε

√
N .

Applying this sequence twice, once for t = η
2 and once for t = η + 2α− ε

√
N , we get that

A
η
2 ⊂ Vε(S

η
2
+α) ⊂ A

η
2
+2α+ε

√
N ⊂ Aη+2α−ε

√
N ⊂ Vε(Sη+3α−ε

√
N ) ⊂ Aη+4α.

The value ε has been chosen precisely such that the parameters of the two offsets of A in the middle differ
by ε

cNµ
. Specifically, writing x = η

2 + 2α+ ε
√
N and y = η + 2α− ε

√
N , we have y − x = ε

cNµ
. Hence,

applying Lemma 7 to A, we get the existence of an ε-cubical set X such that Ax ⊂ X ⊂ Ay and the maps
corresponding to the inclusions are homotopy equivalences. The lemma follows.

4.2 Homological simplification

Almost all pieces are in place to write a reconstruction algorithm. Given as input a sample S of a shape
A, Lemma 8 suggests to enumerate all cubical sets nested between the two cubical sets L = Vε(S l) and
K = Vε(Sk) and stop as soon as we find a faithful homological reconstruction (see Figure 4). Yet, we
still need to discuss how to recognize that a cubical set X nested between cubical sets L and K is actually
a faithful homological reconstruction of shape A. For this, we will suppose that simplicial complexes
L ⊂ X ⊂ K triangulate cubical sets L ⊂ X ⊂ K and characterizes X = |X| using the notion of
homological simplification introduced below.

Definition 4 (Homological simplification). Let L ⊂ K be two simplicial complexes. The simplicial
complex X is said to be a homological simplification of the pair (K,L) if L ⊂ X ⊂ K and the maps
j∗ : Hp(L) → Hp(X) and i∗ : Hp(X) → Hp(K) induced by inclusions are respectively surjective and
injective for all integers p ≥ 0.

A useful observation is that since we are working with coefficients in F and homology groups are finite-
dimensional vector spaces, X is a homological simplification of the pair (K,L) if and only if X realizes the
persistent homology of L into K. This is a consequence of the following lemma:

Lemma 9. For any sequence of finite-dimensional vector spaces U → V → W , the map U → V is
surjective and the map V →W is injective if and only if Rank(U →W ) = dim(V ).

Proof. Indeed, if j : U → V is surjective and i : V →W is injective then

Rank(i ◦ j) = dim(i ◦ j(U)) = dim(i(V )) = dim(V ).

Conversely, note that

dim(V ) ≥ Rank(i) ≥ Rank(i ◦ j),
dim(V ) ≥ Rank(j) ≥ Rank(i ◦ j).

Thus, if dim(V ) = Rank(i ◦ j), then dim(V ) = Rank(i) = Rank(j) and so i is injective and j surjective.

The next lemma follows immediately.
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Figure 4: Top: boundaries of L = Vε(S l) and K = Vε(Sk) are depicted in red and dark green. Bottom: the
cubical set X in blue is nested between L and K and is a faithful homological reconstruction of A.

Lemma 10. Consider a sequence of simplicial complexes L ⊂ X ⊂ K. The simplicial complex X is
a homological simplification of the pair (K,L) if and only if Hp(X) is isomorphic to the image of the
homomorphism Hp(L)→ Hp(K) induced by the inclusion L ⊂ K, for all integers p ≥ 0.

Lemma 11. Let x1, x2, x3 be three real numbers and A a compact subset of RN such that 0 < x1 < x2 <
x3 < wfs(A). Let L ⊂ K be two simplicial complexes such that:

Ax1 ⊂ |L| ⊂ Ax2 ⊂ |K| ⊂ Ax3 .

Suppose X is a simplicial complex such that L ⊂ X ⊂ K. Then, X is a homological simplification of the
pair (K,L) if and only if |X| is a faithful homological reconstruction of A.

Proof. First observe that for any diagram of vector spaces A1 → L → A2 → K → A3 where the maps
A1 → A2 → A3 are isomorphisms, we have Rank(L→ K) = dim(Ai) for all i ∈ {1, 2, 3}. Indeed,
A1 → A2 bijective implies that L→ A2 surjective and A2 → A3 bijective implies that A2 → K injective.
We conclude by applying Lemma 9 to the diagram L → A2 → K. Consider now the diagram of vector

12



Table 2: Naive reconstruction algorithms. |X| denotes the underlying space of the simplicial complex X .
sc(X ) denotes a triangulation of the cubical set X compatible with inclusion.

NAIVE_1( S, α, η, µ )
PRECONDITION: ∃A, dH(S,A) < α < 1

4
(wfs(A)− η)

OUTPUT: either ∅ or a faithful homological reconstruction
of all A∈W (S, α, η).

ε← η

4
√
N+2/(cNµ)

l← η
2
+ α; k ← η + 3α− ε

√
N

L← sc(Vε(Sl)); K ← sc(Vε(Sk))

for all (X such that L ⊂ X ⊂ K )
if (X is a homological simplification of (K,L) )

return |X|
end for

return ∅

NAIVE_2( S, α, η )
PRECONDITION: ∃A, dH(S,A) < α < 1

4
(wfs(A)− η)

OUTPUT: a faithful homological reconstruction of all
A∈W (S, α, η).

µ← 1
α′← α+ η

8

η′← η
4

while ( TRUE )
X ← NAIVE_1(S, α′, η′, µ)
if ( X != ∅ ) return X
µ← µ

2

end while

spaces

A2
p

A1
p Lp Kp A3

p

Xp

in which Ai
p = Hp (Axi), Lp = Hp (|L|), Kp = Hp (|K|), Xp = Hp (|X|), and the arrows represent

inclusion maps. We prove the lemma by establishing equivalences between the following five statements:

(i) X is a homological simplification of the pair (K,L);

(ii) Lp → Xp is surjective and Xp → Kp is injective for all p ≥ 0;

(iii) dim(Xp) = Rank(Lp → Kp) = dim(Ai
p) for all i ∈ {1, 2, 3} and all p ≥ 0;

(iv) all maps A1
p → Xp → A3

p are isomorphisms for all p ≥ 0;

(v) |X| is a faithful homological reconstruction.

By definition of a homological simplification, (i) is equivalent to (ii). By Lemma 9, (ii) is equivalent to (iii).
To prove (iii) =⇒ (iv), we just need to observe that A1

p → A3
p is a bijection. The reverse implication

is obvious. By definition of a faithful homological reconstruction and using the observation at the end of
Section 3.1, (iv) is equivalent to (v).

4.3 First naive reconstruction algorithm

We are now ready to describe our first reconstruction algorithm NAIVE_1. Its pseudocode is given in Table 2,
left. Recall that Vε(Y) designates the union of ε-voxels that intersect the subset Y ⊂ RN . Given as input
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the 4-tuple (S, α, η, µ), the algorithm proceeds as follows. It chooses a voxel size ε, two offset parameters
l and k (see Table 2 for the exact values of ε, l and k) and derives from the sample S two ε-cubical sets
L = Vε(S l) and K = Vε(Sk), obtained by collecting all ε-voxels intersecting respectively S l and Sk (see
Figures 3 and 4). For all cubical sets X containing L and contained in K, the algorithm then considers three
nested simplicial complexes L ⊂ X ⊂ K triangulating the three cubical sets L ⊂ X ⊂ K in a way that
is consistent with the grid. It then returns the underlying space X of X if the simplicial complex X is a
homological simplification of the pair (K,L) (see definition above). If no homological simplification X is
found between L and K, the algorithm returns the empty set.

Theorem 12. Let S ⊂ RN , α > 0, µ ∈ (0, 1], and η > 0. Assuming the precondition W (S, α, η) 6= ∅
on the input, the algorithm NAIVE_1 outputs either the empty set or a faithful homological reconstruction
of all shapes in W (S, α, η). If furthermore we assume the stronger precondition W (S, α, η, µ) 6= ∅ on the
input, the algorithm NAIVE_1 does not return the empty set.

Proof. The correctness of the algorithm NAIVE_1 relies on the lemmas stated in the previous sections. Let
A ∈ W (S, α, η). Equivalently, dH(S,A) < α and η + 4α < wfs(A). By Lemma 8, we thus have the
sequence of inclusions:

A
η
2 ⊂ |L| ⊂ A

3η
4
+2α ⊂ |K| ⊂ Aη+4α,

with η + 4α < wfs(A). Lemma 11 then implies that if X is a homological simplification of the pair
(K,L), its underlying space X = |X| is a faithful homological reconstruction of A. Furthermore, if A ∈
W (S, α, η, µ) or equivalently if dH(S,A) < α < 1

4 (rµ(A)− η), Lemmas 8 and 11 guarantee that the
algorithm returns a faithful homological simplification of A (and not ∅).

Let us bound the time complexity of a more efficient version of the algorithm in which voxels are not
decomposed into simplices. Let D be the diameter of S and set D′ = D + 2(η + 3α). It is not difficult

to check that this simpler algorithm has time complexity O
(
2|K||K|3

)
= O

(
2

(
D′
ε

)N (
D′

ε

)3N)
. Indeed,

the size of K is O((D′/ε)N ). Checking if X is a homological simplification of (K,L) takes cubic time the
size of K and the number of cubical sets X between L and K is O(2|K|). If the voxels are decomposed into
simplices, the running time increases but remains finite.

4.4 Second naive reconstruction algorithm

We now describe our second reconstruction algorithm NAIVE_2. Its pseudocode is given in Table 2, right.
The algorithm takes as input a triplet (S, α, η). Starting with µ = 1, it calls NAIVE_1 with decreasing values
of µ until NAIVE_1 returns a non-empty set.

Theorem 13. Let S ⊂ RN , α > 0, and η > 0. Assuming the precondition W (S, α, η) 6= ∅ on the input, the
algorithm NAIVE_2 outputs a faithful homological reconstruction of all shapes in W (S, α, η) after a finite
number of iterations.

Proof. The algorithm terminates thanks to the lower semi-continuity of the critical function χA. Suppose
W (S, α, η) 6= ∅ and let A ∈ W (S, α, η), i.e. such that dH(S,A) < α < 1

4(wfs(A) − η). Because χA
is lower semi-continuous, it attains its minimum µ′ > 0 over the interval [η8 , 4α + 7η

8 ]. Setting A′ = A
η
8 ,
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α′ = α + η
8 and η′ = η

4 , we have rµ′(A′) > 4α + 3η
4 = 4α′ + η′ (see Figure 5 for an explanation) and

therefore
dH(S,A′) ≤ dH(S,A) + dH(A,A′) < α+

η

8
= α′ <

1

4

(
rµ′(A′)− η′

)
.

It follows that for all 0 < µ ≤ µ′ we have A′ ∈ W (S, α′, η′, µ) 6= ∅ because rµ′(A′) ≤ rµ(A′). Thus, at
some point, the algorithm NAIVE_1 will be called with input (S, α′, η′, µ) satisfying W (S, α′, η′, µ) 6= ∅
and by Theorem 12 will return a non-empty set to the algorithm NAIVE_2. When this happens, the result
is a faithful reconstruction of every shape in W (S, α′, η′) and in particular of A since dH(S,A) < α′ <
1
4(wfs(A)− η′) as can be easily checked.

Note that algorithm NAIVE_1 can be considered as an approximation of an optimal reconstruction algo-
rithm. Even though the algorithm terminates, its time complexity is unbounded.

χAr (ρ)

r0

µ′

ρ

χA(ρ)

R

Figure 5: Performing an r-offset translates the critical function to the left by r [11]. Thus, χA(ρ) ≥ µ′ on
[r,R] implies rµ′(Ar) > R− r.

5 Homological simplification is NP-complete

In this section, we focus on the problem of computing a homological simplification and prove that this
problem is NP-complete, at least when F = Z2. We denote the p-th homology group of K by Hp(K) and
work with coefficients in the field Z2 of integers modulo 2. A simplicial pair (K,L) consists of a (finite)
simplicial complex K and a subcomplex L ⊂ K. When clear from the context, we will simply speak of the
pair (K,L) and omit “simplicial”. We say that the pair (K,L) is p-dimensional if the simplicial complex K
has dimension p.

Definition 5 (Homological simplification problem). The homological simplification problem takes as
input a simplicial pair (K,L) and asks whether there exists a simplicial complex X which is a homological
simplification of the pair (K,L).

The size of the problem is the number of simplices in K. We are now ready to state our main theorem:

Theorem 14. The homological simplification problem of 2-dimensional simplicial pairs is NP-complete.

Proof. To check that a candidate X is a homological simplification of the p-dimensional pair (K,L), it
is enough to compute the dimension of the p-th homology group of X and compare it to the rank of the
persistent p-th homology group of K into L, for all p. Since all computations can be done in time cubic
in the number of simplices in K, we deduce that the homological simplification problem of p-dimensional
simplicial pairs is in NP. In Section 5.1, we prove that this problem is NP-hard for p = 2 by reducing 3SAT
to it in polynomial time. Figure 6 summarizes the reduction.
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3CNF formula
with n clauses

Pair (K,L)
with size O(n)

Satisfying assignment
Homological

simplification X

O(n)

SIMPLIFICATION

O(n)

Figure 6: Diagram of the reduction.

5.1 Reduction from 3SAT

3SAT. A Boolean formula E is in 3-conjunctive normal form, or 3CNF, if it is a conjunction (AND) of
n clauses c1, c2, . . . , cn, each of which is a disjunction (OR) of three literals, each literal being a Boolean
variable or its negation [17]. Specifically, E =

∧
1≤i≤n ci and each clause ci has the form

ci =
(
e1i vj1i

)
∨
(
e2i vj2i

)
∨
(
e3i vj3i

)
,

where jki ∈ {1, . . . ,m}, vjki is a Boolean variable and eki ∈ {1,¬} is either the identity symbol 1 or the
negation symbol ¬, for 1 ≤ k ≤ 3. The 3SAT problem takes as input a 3CNF formula E and determines
whether one can assign a value TRUE or FALSE to each variable of E such that E evaluates to TRUE. An
assignment of variables which makes E evaluates to TRUE is called a satisfying assignment. Since the
number m of variables used in formula E is at most three times the number n of clauses, i.e. m ≤ 3n, we
let n be the size of the 3SAT problem. 3SAT is known to be NP-complete.

Reduction algorithm. We describe a reduction algorithm that transforms in linear time any instance E
of the 3SAT problem into an instance (K,L) of the homological simplification problem in such a way that
(K,L) has a homological simplification if and only ifE has a satisfying assignment. Given a 3CNF formula
E of n clauses c1, . . . , cn and m variables v1, . . . , vm, we construct a 2-dimensional simplicial pair (K,L)
as follows; see Figure 7. The simplicial complex L consists of

• a vertex A;

• two vertices Bi and Ci and three edges ABi, BiCi and CiA for each clause ci;

• two vertices Vj and Wj and the edge VjWj for each variable vj .

Besides simplices in L, the simplicial complex K contains three triangles per literal and two edges per
variable. Specifically, if eki = 1, we add the three triangles ABiVjki , BiCiVjki and CiAVjki and their edges.
If eki = ¬, we add the three triangles ABiWjki

, BiCiWjki
and CiAWjki

and their edges. Moreover, we add
edges AVj and AWj for all j ∈ {1, . . . ,m}. Observe that the size of K is only a constant factor larger than
the size of E and its construction requires linear time in n.

Let f∗ : Hp(L) → Hp(K) be the homomorphism induced by the inclusion L ⊂ K. Since K is
connected, we have f∗(H0(L)) = Z2. Furthermore, f∗(H1(L)) = 0 since a base of the 1-cycles in L is
given by the n cycles σi = ABi + BiCi + CiA and σi is homologous to 0 in K for each i ∈ {1, . . . , n}.
Last, f∗(H2(L)) = 0 since L contains no 2-simplices. By Lemma 10, we obtain that X is a homological
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W4W3 W6W1 W2 W5

B4 C3

B2

C1

B1

C2

B3

A

V1 V2 V3 V4 V5 V6

C5

B5

C4

Figure 7: Simplicial complex L output by the reduction of a formula with five clauses and six variables and
triangles in K created by clause c1 = v2 ∨ ¬v3 ∨ ¬v5.

B1

V1 W1

B2

A

C1

W2
V2

C2

W4

V4

W3

V3

Figure 8: Pair (K,L) produced by the reduction of formula (v1 ∨ ¬v2 ∨ ¬v3) ∧ (v1 ∨ v2 ∨ v4). L consists
of the vertices and bold edges.

simplification of the pair (K,L) if and only if H0(X) = Z2, H1(X) = 0 and H2(X) = 0. Keeping this
in mind, we establish the following lemma, in which (K,L) designates the pair output by our reduction
algorithm when applied to formula E.

Lemma 15. The pair (K,L) has a homological simplification if and only if the formula E has a satisfying
assignment. Furthermore, given a homological simplification of the pair (K,L), computing a satisfying
assignment for E takes linear time.

Proof. Suppose the pair (K,L) has a homological simplification X and let us prove that E has a satisfying
assignment. First, we claim that X cannot contain both edges AVj and AWj , for 1 ≤ j ≤ m. Indeed, if
both edges AVj and AWj were in X , we could consider the cycle τ = AVj +VjWj +WjA. Since the edge
VjWj bounds no triangle in K, the cycle τ cannot be homologous to 0 in X , contradicting H1(X) = 0.

The claim allows us to assign to each variable vj either the value TRUE if the edge AVj belongs to X or
the value FALSE if the edge AWj belongs to X . If none of the edges AVj and AWj belong to X , then we
assign to vj an arbitrary value in {TRUE, FALSE}; see Figure 9. Note that the computation of this assignment
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can be done in linear time. We now check that this assignment of boolean values to the variables vj is a
satisfying assignment, in other words we show that all clauses ci are satisfied for 1 ≤ i ≤ n.

Since H1(X) = 0, the 1-cycle ABi + BiCi + CiA is a boundary in X . This implies that at least one
triangle of X contains ABi on its boundary. By construction, ABi belongs to exactly three triangles in K,
namely the triangles ABiY k

i for 1 ≤ k ≤ 3 where Y k
i designates Vjki if eki = 1 and Wjki

if eki = ¬. It
follows that one of the three triangles ABiY k

i must belong to X and, in turn, at least one of the three edges
AY k

i for 1 ≤ k ≤ 3 is in X . This implies that one of the three literals eki vjki in clause ci evaluates to TRUE

and hence ci is satisfied.

v3 = FALSE

v1, v4 ∈ {TRUE, FALSE}

v2 = TRUE

W3

V1 W1

B2

C1

W2
V2

C2

W4

V4

V3

B1

A

Figure 9: A homological simplification of the pair (K,L) drawn in Figure 8 and output by the reduction of
formula E = (v1 ∨ ¬v2 ∨ ¬v3) ∧ (v1 ∨ v2 ∨ v4). Corresponding satisfying assignments for E.

Conversely, suppose variables v1, . . . , vm have been assigned values that cause E to evaluate to TRUE

and let us prove that the pair (K,L) has a homological simplification X . We construct X starting from L
and adding some simplices of K as follows; see Figure 10. We begin by adding the edge AVj if vj = TRUE

and the edge AWj if vj = FALSE, for all j ∈ {1, . . . ,m}. Since values of v1, . . . , vm are a satisfying
assignment, we can choose one literal eivji in each clause ci that is true. Let Yi = Vji if ei = 1 and
Yi = Wji if ei = ¬. Note that by construction, the edgeAYi is already inX . We then add the three triangles
ABiYi, BiCiYi and CiAYi to X , for all i ∈ {1, . . . , n}.

Let us check that X is indeed a solution to the homological simplification problem, i.e. H0(X) = Z2,
H1(X) = 0 and H2(X) = 0. For this, we check that X is contractible by collapsing X to A, using a
sequence of elementary collapses. First, observe that exactly one of the two vertices Vj or Wj belongs to
no other simplices than the edge VjWj . For instance, if vj = TRUE, then by construction AVj ∈ X and
AWj 6∈ X . Thus, Wj belongs to no other simplices than VjWj and we can collapse the edge VjWj to the
vertex Vj by removing the pair of simplices (Wj , VjWj). Similarly, if vj = FALSE, we collapse the edge
VjWj to the vertex Wj . For all i ∈ {1, . . . , n}, we apply five elementary collapses, first removing the three
trianglesABiYi, BiCiYi and CiAYi and their edgesABi, BiCi and CiA, then removing the edgesBiYi and
CiYi and their vertices Bi and Ci. Last, we collapse every edge AYi for 1 ≤ i ≤ n to the vertex A.
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v2 = FALSE

v3 = TRUE

v1 = FALSE

v4 = TRUE

W3

B1

A

V1 W1

B2 V4

W4

C2

V2W2

C1

V3

Figure 10: Satisfying assignment for formula E = (v1 ∨ ¬v2 ∨ ¬v3) ∧ (v1 ∨ v2 ∨ v4) and corresponding
homological simplification of (K,L).

6 Discussion

In this paper, we presented an algorithm for reconstructing a shape under a very weak sampling condition,
but at the expense of computing the homological simplification of a simplicial pair, which we proved is
NP-hard. Our work raises several questions and research tracks.

Open questions. Is there a version of Lemma 7 in which the voxel size does not depend on µ? Is the
homological simplification problem in the same class of complexity if we constraint K to be a subcomplex
of a triangulation of the sphere S3?

Optimistic research track. If a polynomial time optimal reconstruction algorithm exists, it should take
advantage of the embedding in Euclidean space or at least lead to a class of simplification problems suffi-
ciently constrained to avoid constructions similar to ours.

Pessimistic research track. Is it possible to encode 3-SAT as the homological simplification of a pair
(K3α(S),Kα(S)), where (S, α) satisfies the weak sampling condition? Or, as the homological simplifica-
tion of a pair of cubical complexes defined by offsets of the sample? If yes, in which minimal dimension?
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