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Abstract

We show that the Delaunay triangulation of a set
of n points distributed nearly uniformly on a p-
dimensional polyhedron (not necessarily convex) in
d-dimensional Euclidean space is O(n

d−k+1
p ), where

k = �d+1
p+1�. This bound is tight, and improves on the

prior upper bound for most values of p.

1 Introduction

Overview. The Delaunay triangulation of a set of
points is a fundamental geometric data structure,
used, in low dimensions, in surface reconstruction,
mesh generation, molecular modeling, geographic in-
formation systems, and many other areas of sci-
ence and engineering. In higher dimensions, it is
well-known [9] that the complexity of the Delaunay
triangulation of n points is O(n� d

2 �) and that this
bound is achieved by distributions of points along one-
dimensional curves such as the moment curve. But
points distributed uniformly in Rd, for instance inside
a d-dimensional ball, have Delaunay triangulations of
complexity O(n); the constant factor is exponential
in the dimension, but the dependence on the number
of points is linear. In an earlier paper [1], we began
to fill in the picture in between these two extremes,
that is, when the points are distributed on a mani-
fold of dimension 2 ≤ p ≤ d − 1. We began with
the easy case of a p-dimensional polyhedron P , and
showed that for a particular (probably overly restric-
tive) sampling model the size of the Delaunay trian-
gulation is O(n(d−1)/p).

Main result. Here as in [1], we consider a fixed p-
dimensional polyhedron P in d-dimensional Euclidean
space Rd. Our point set S is a sparse ε-sample from
P . Sparse ε-sampling requires the sampling to be nei-
ther too sparse nor too dense. Let n be the number
of points in S. We consider the complexity of the
Delaunay triangulation of S, as n → ∞, while P re-
mains fixed. The main result in this paper is that the
number of simplices of all dimensions is O(n

d−k+1
p )
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where k = �d+1
p+1�. The hidden constant factor de-

pends, among other things, on the geometry of P ,
which is constant since P is fixed.

At the coarsest level, the idea of this proof is the
same as that of [1]: we map Delaunay simplices to the
medial axis and then use a packing argument to count
them. The key new idea is the observation that when
k = �d+1

p+1� > 2, the vertices of any Delaunay simplex,
which must span Rd, have to be drawn from more
than two faces of P . This allows us to map Delau-
nay simplices to only the lower-dimensional subman-
ifolds of the medial axis, induced by k or more faces.
To realize this scheme, we introduce a new geometric
structure, the quasi medial axis, which replaces the
centers of tangent balls defining the medial axis with
the centers of tangent annuli. In this paper, we only
present an outline of the proof. Full details can be
found in [2].

Prior work. The complexity of the Delaunay trian-
gulation of a set of points on a two-manifold in R3

has received considerable recent attention, since such
point sets arise in practice, and their Delaunay tri-
angulations are found nearly always to have linear
size. Golin and Na [6] proved that the Delaunay tri-
angulation of a large enough set of points distributed
uniformly at random on the surface of a fixed con-
vex polytope in R3 has expected size O(n). They
later [7] established an O(n log6

n) upper bound with
high probability for the case in which the points are
distributed uniformly at random on the surface of a
non-convex polyhedron.

Attali and Boissonnat considered the problem us-
ing a sparse ε-sampling model similar to the one we
use here, rather than a random distribution. For such
a set of points distributed on a polygonal surface P ,
they showed that the size of the Delaunay triangula-
tion is O(n) [3]. In a subsequent paper with Lieu-
tier [4] they considered “generic” smooth surfaces,
and got an upper bound of O(n log n). Specifically,
a “generic” surface is one for which each medial ball
touches the surface in at most a constant number of
points.

The genericity assumption is important. Erickson
considered more general point distributions, which he
characterized by the spread: the ratio of the largest
inter-point distance to the smallest. The spread of a
sparse ε-sample of n points from a two-dimensional
manifold is O(

√
n). Erickson proved that the De-
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launay triangulation of a set of points in R3 with
spread ∆ is O(∆3). Perhaps even more interestingly,
he showed that this bound is tight for ∆ =

√
n, by

giving an example of a sparse ε-sample of points from
a cylinder that has a Delaunay triangulation of size
Ω(n3/2) [5]. Note that this surface is not generic and
has a degenerate medial axis.

To the best of our knowledge, ours [1] is the only
prior result for d > 3.

2 Statement of Theorem

In this section, we introduce the setting for our result.
Given a polyhedron P ⊆ Rd and a point x on P , let
Fx be the unique face that contains x. We say that a
set of points S ⊆ P is a λ-sparse ε-sample of P iff it
satisfies the following two conditions:

Density: Every point x in P is at distance ε or less
to a point s in S lying on the closure of Fx.

Sparsity: Every closed d-ball with radius 6dε con-
tains at most λ points of S.

Note that our density condition implies that all
faces of all dimensions are uniformely sampled, not
just faces with highest dimension as in [3, 4]. Here-
after, we consider λ to be a constant. The number
n of points in a λ-sparse ε-sample of a p-dimensional
polyhedron is related to ε by n = Θ(ε−p). Thus, as n

tends to infinity, ε tends to zero. We are now ready
to state our main result:

Theorem 1 Let S be a λ-sparse ε-sample of a p-
dimensional polyhedron P in Rd, and let n be the
number of points in S. The Delaunay triangulation

of S has size O(n
d−k+1

p ) where k = �d+1
p+1�.

Note that our result requires no non-degeneracy as-
sumption, neither on P nor on S.

3 Essential quasi medial axes

In this section, we introduce the ε-quasi k-medial axis,
a variant of the medial axis based on tangent an-
nuli rather than tangent balls, which is the key ge-
ometric object in our proof. We then define the part
of the ε-quasi k-medial axis to which Delaunay sim-
plices will be mapped: the essential ε-quasi k-medial
axis (considering only the parts of dimension at most
d − k + 1 and lopping off the parts which extends to
infinity). Along the way, we give a tool to identify
lower-dimensional parts of the ε-quasi k-medial axis.

3.1 Quasi medial axes

We start by defining ε-quasi k-medial axes. We say
that a (d−1)-sphere Σ is tangent to a face F at point x

if both the closure of F and the affine space spanned

by F intersect Σ in a unique point x. An annulus
with center z, inner radius r and outer radius R is the
set of points x whose distance to the center satisfies
r ≤ �x−z� ≤ R. The boundary of an annulus consists
of two (d − 1)-spheres and we call the smallest one
the inner sphere and the largest one the outer sphere.
Extending what we just defined for spheres, we say
that an annulus A is tangent to F at x if one of the
two spheres bounding A is tangent to F at x. Point x

is called a tangency point of A. An annulus is P -empty
if its inner sphere bounds a d-ball whose interior does
not intersect P . An annulus is called ε-thin if the
difference between the outer and inner radii squared
is R2 − r2 = ε2.

Definition 1 The ε-quasi k-medial axis Mk(P, ε) of
P is the set of points z ∈ Rd for which for the largest
P -empty ε-thin annulus centered at z, A(z, ε), is tan-
gent to at least k faces of P (see Figure 1).

z

ε

A(z, ε)

Figure 1: A rectangle and its ε-quasi 2-medial axis com-
posed of 16 half-lines, 5 segments and 8 pieces of hyper-
bolas.

3.2 Identifying lower-dimensional strata

Because P might be degenerate, we must introduce
a tool to identify the parts of Mk(P, ε) which have
dimension d − k + 1 or less very carefully. We recall
that a stratification of a subset X ⊆ Rd is a filtration

∅ = X−1 ⊆ X0 ⊆ · · · ⊆ Xj = X

by subspaces such that the set difference Xi \ Xi−1

is a i-dimensional manifold, called the i-dimensional
stratum of X. In particular, semi-algebraic sets admit
a stratification [8] and since ε-quasi k-medial axes of
polyhedra are piecewise semi-algebraic, they also ad-
mit a stratification.

Definition 2 We say that k faces F1, . . . , Fk are in-
dependent if none of them is contained in the affine
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space spanned by the union of the others, that is for
1 ≤ i ≤ k,

Fi �⊆ Aff(F1 ∪ · · · ∪ �Fi ∪ · · · ∪ Fk),

where the symbol � over Fi indicates that it is omitted
in the union.

Lemma 2 Let z ∈ Mk(P, ε) and suppose that
A(z, ε) is tangent to j faces amongst which k faces are
independent. Then, z lies on a stratum of Mk(P, ε)
of dimension d− k + 1 or less.

3.3 Essential part

The ε-quasi k-medial axis in general extends to infin-
ity and therefore can have an infinite volume. In this
section, we select a subset of the ε-quasi k-medial axis
called the essential ε-quasi k-medial axis, M̄k(P, ε) in
such a way that all its strata will have a finite vol-
ume bounded by a constant that does not depend on
ε. For this, we need some definitions. We say that
a hyperplane supports X ⊆ Rd if it has non-empty
intersection with the boundary of X and empty inter-
section with the interior of X.

Definition 3 A point z is ε-essential if there exists
no hyperplane supporting the convex hull of P and
containing all faces tangent to A(z, ε).

It follows immediately from the definition that:

Lemma 3 If the union of faces tangent to A(z, ε)
spans Rd, then z is ε-essential.

Definition 4 The essential ε-quasi k-medial axis,
M̄k(P, ε), is the set of ε-essential points lying on the
union of the i-dimensional strata of the ε-quasi k-
medial axis over all i ≤ d− k + 1.

Lemma 4 For ε smaller than the diameter of P , the
i-dimensional stratum of the ε-quasi k-medial axis has
a i-dimensional volume bounded by a constant, that
does not depend on ε.

4 Covering Delaunay spheres

The goal of this section is to prove that the intersec-
tion of a p-dimensional polyhedron P with any Delau-
nay sphere Σ is contained in the cover of some point z

on the essential ε-quasi k-medial axis, for k = �d+1
p+1�.

We first state crucial properties of Delaunay spheres
and polyhedra before defining the cover of a point.
The first property is induced by our sampling condi-
tion.

Definition 5 We say that a sphere Σ with center z

is ε-almost P -empty if Σ ⊆ A(z, ε).

Lemma 5 Delaunay spheres are ε-almost P -empty.

The second property concerns polyhedra.

Definition 6 We say that a polyhedron P is k-
reductible if for any collection of k − 1 faces
{F1, . . . , Fk−1} of P , there exists a hyperplane that

contains the union
�k−1

i=1 Fi.

Lemma 6 Any p-dimensional polyhedron of Rd is
�d+1

p+1�-reductible.

We now define the cover of a point z ∈ Rd. Writing
πx(z) for the orthogonal projection of z onto the tan-
gent plane of x ∈ P , we say that x is a critical point
of the distance-to-z function if πx(z) = x. We define
χ(z, ε) as the set of critical points lying in P ∩A(z, ε)
and the cover of z as:

Cover(z, ε) =
�

x∈χ(z,ε)

B(x, 5dε).

Lemma 7 Consider a k-reductible polyhedron P

that spans Rd. For every ε-almost P -empty sphere
Σ, there exists a point z ∈ M̄k(P, ε) such that

Σ ∩ P ⊆ Cover(z, ε).

In the next section, it will be convenient to use a
slightly different notion of cover. Let Π(z) be the set
of orthogonal projections of z onto the planes sup-
porting faces of P . We define the extended cover of
point z as

ExtendedCover(z, ε) =
�

x∈Π(z)

B(x, 6dε).

Lemma 8 For every points z and z� with �z−z�� ≤ ε:

Cover(z, ε) ⊆ ExtendedCover(z�, ε).

5 Size of Delaunay triangulation

In this section, we collect results from previous sec-
tions and establish our upper bound on the number
of Delaunay simplices. We then prove that our bound
is tight. We recall that the number of points in a λ-
sparse ε-sample S of a p-dimensional polyhedron P

is n = Θ(�−p) and that the i-faces of P have Θ(ε−i)
points of S [1].

5.1 Upper bound

Without loss of generality, we may assume that the
polyhedron P spans Rd. An ε-sample of the essential
ε-quasi k-medial axis is a subset M ⊆ M̄k(P, ε) such
that every point x ∈ M̄k(P, ε) is at distance no more
than ε to a point z ∈ M , �x− z� ≤ ε. We claim that
we can construct an ε-sample M of M̄k(P, ε) in such
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a way that the i-dimensional stratum of the essen-
tial ε-quasi k-medial axis receives O(ε−i) points of M

and the number of points in M is m = O(ε−(d−k+1)).
This is a consequence of Lemma 4 which says that the
i-dimensional volume of the i-dimensional stratum of
M̄k(P, ε) is bounded by a constant that does not de-
pend on ε. To establish our upper bound, we map
each Delaunay simplex σ ∈ Del(S) to a point z ∈ M .
Consider a Delaunay sphere Σ passing through the
vertices of σ. By Lemma 5, Delaunay spheres are ε-
almost P -empty. We can therefore combine Lemma
6, Lemma 7 and Lemma 8 and get that for d ≥ 2 and
k = �d+1

p+1�, there exists a point z ∈ M such that

Σ ∩ P ⊆ ExtendedCover(z, ε)

The extended cover of z is a union of d-balls of radius
6dε, one for each face of the polyhedron and therefore,
it contains a constant number of points of S. It follows
that the number of simplices that we can form by
picking points in the extended cover of z is constant.
Hence, each point z ∈ M is charged with a constant
number of Delaunay simplices and using n = Ω(ε−p),
we get that the number of Delaunay simplices is

O(m) = O(ε−(d−k+1)) = O(n
d−k+1

p ),

where k = �d+1
p+1�.

5.2 The bound is tight

We now prove that our upper bound is tight. Con-
sider a set of d+1 affinely independent points that we
partition into k = �d+1

p+1� groups Q1, . . . , Qk in such a
way that the maximum number of points in Qi, over
all i ∈ [1, k], is p + 1. Writing qi for the dimension of
the affine space spanned by Qi, we have

k�

i=1

qi = d− k + 1. (1)

Letting Ci be the convex hull of Qi, we consider the
polyhedron P =

�k
i=1 Ci. Let S be a λ-sparse ε-

sample of P . The simplex σ = {s1, . . . , sk} obtained
by picking a sample point si ∈ S ∩ Ci for 1 ≤ i ≤ k

belongs to the Delaunay triangulation. Indeed, since
the points s1, . . . , sk are affinely independent, there
exists a (d − 1)-sphere Σ tangent to P at si for 1 ≤
i ≤ k, whose center lies on the 0-quasi k-medial axis
of P . By construction, this sphere encloses no sample
point of S in its interior, showing that σ is a Delaunay
simplex. Since Ci contains Ω(ε−qi) points of S, the
amount of Delaunay simplices that we can construct
this way is at least

Ω(ε−q1 × · · ·× ε
−qk) = Ω(ε−(d−k+1)) = Ω(n

d−k+1
p ).

6 Conclusion

This paper answers only the first of many possible
questions about the complexity of the Delaunay tri-
angulations of points distributed nearly uniformly on
manifolds. Similar bounds for smooth surfaces rather
than polyhedra would be of more practical interest.
The proof in this paper seems to rely on some prop-
erties specific to polyhedra, particularly that sample
points on k faces are needed to form a simplex. On
the other hand, the tight bound seems to be “right”,
at least in the sense that it agrees with the well-known
bounds in the cases p = 1 and p = d.
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