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Abstract. Building on the work of Martinetz, Schulten and de Silva, I€swn,
we introduce &-parameter family of withess complexes and algorithms éorc
structing them. This family can be used to determine theggrmsology of point
cloud data inR? or other metric spaces. Tteparameter family is sensitive to
differences in sampling density and thus amenable to detepatterns within
the data set. It also lends itself to theoretical analysis ekample, we can prove
that in the limit, when the witnesses cover the entire domaitness complexes
in the family that share the first, scale parameter have time $eomotopy type.

1 Introduction

The analysis of large data sets is a paradigm of growing itapoe in the sciences.
Broad advances in technology are leading to ever largers#tacapturing informa-
tion in unprecedented detail. Examples are micro-arragsghobe gene activity for

entire genomes and sensor networks that challenge outyabilintegrate time-series
of distributed measurements. After distilling such datd giving it a geometric inter-

pretation as a point cloud in possibly high-dimensional mispace, we are faced
with the problem of extracting properties of that cloud,tsas its gross topology, vari-
ous patterns within it, or its geometric shape. We see thaysifithese point clouds as
an extension of the reconstruction of surfaces from poimtids$ inR?; see the recent
monograph on this topic [1].

In this paper we adopt the point of view that the goal is notr#e®nstruction of a
unique shape but rather a hierarchy that captures the ddifeea¢nt scale levels. In this
we are inspired by the work on alpha shapes where scale isregldiy the radius of the
spherical neighborhoods defined around the data point®[&]point of departure is in
the method of reconstruction. Instead of appealing to theionef the ambient space
we use the data itself to drive the formation of the family ofrplexes. Specifically,
we distinguish data points by the way we use them:lamglmarksform the vertices
of the complexes we build and thdtnesseprovide support for simplices we add to
connect the vertices. This idea can be traced back to thdagpadapting networks
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of Martinetz and Schulten [3], who draw an edge between twdrgarks if there is a
witness for which they are the two nearest. We may interpieettitness as a proof for
the edge to belong to the Delaunay triangulation of the laarttrpoints. Unfortunately,
a witness is not proof for its three nearest landmarks fograitriangle in the Delaunay
triangulation. The resulting impasse was overcome formangi Delaunay triangula-
tions by de Silva [4]. He proved that if for every subsetof 1 landmarks there is a
witness for which the points in the subset are at least ag @esny other landmarks,
then this is a proof for the+ 1 landmarks to form @-simplex in the Delaunay triangu-
lation. This insight motivated de Silva and Carlsson toadtrce a generalization of the
Martinetz-Schulten networks to two- and higher-dimenal@omplexes [5]. They used
their new tool to study the picture collection of van Hateesrd van der Schaaf [6],
also considered by Lee, Pedersen and Mumford [7]. The maigtibfrom their work
is that a majority of small pixel subarrays can be paramedron a (two-dimensional)
Klein bottle in7-dimensional ambient space [8].

If the witness complex is patterned after the Delaunay gigetion, why do we not
just construct the latter? There is a variety of reasonydiicg

— the size of the complex can be controlled by choosing thentemls while not
ignoring the information provided by the possibly many msaenple points;

— distances are easier to compute than the primitives redjtoreonstruct Delaunay
triangulations;

— extending the definition of witness complexes to metric spalifferent from Eu-
clidean spaces is comparatively straightforward;

all already mentioned in [5]. There are also significant dragks, such as the locally
imperfect reconstruction caused by the finiteness of theesi set. The main purpose
of this paper is to present methods that cope with the meadiainawback of witness
complexes. Our main contributions are theoretical, in ustdading the family of wit-
ness complexes and its algorithms. Specifically,

(i) we introduce &-parameter family that contains prior witness complexesuds

families;

(i) we generalize de Silva’s result for Delaunay triandiglas to withess complexes in
the limit;

(i) we analyze the structure of the family of witness coey@s by subdividing its
parameter plane;

(iv) we give algorithms to construct this subdivision, cartgghomology within it, and
visualize the result.

Methods that extract the multi-scale topological inforimatalong with computational
experiments will be presented elsewhere.

Outline. Section 2 presents the complexes after which we model ouresst com-
plexes. Section 3 introduces tBeparameter family of witness complexes. Section 4
studies the family through subdivisions of the parametan@l Section 5 describes al-
gorithms constructing alpha-beta witness complexesi@e6tconcludes the paper.



2 Complexes

In this section, we introduce the family of complexes thavle the intuition for our
witness complexes. The family contains thgparameter families o€ech and alpha
complexes and uses a second parameter to interpolate pethhaa. We begin with
definitions from algebraic topology.

Simplicial Complexes. The geometric notion of aimplex o, is the convex hull of a
collection of affinely independent points i&?. We say the pointspanthe simplex.

If there arep + 1 points in the collection, we cali a p-simplexandp = dimo its
dimensionAny subset of the + 1 points defines another simplex.< o, and we call

7 afaceof o ando acofaceof 7. A simplicial complexs a finite collection of simplices,

K, that is closed under the face relation and satisfies tha egtndition that any two

of its simplices are either disjoint or their intersectisraiface of both. Assubcomplex

is a simplicial complexx’ C K. It is full if it contains all simplices inK exclusively
spanned by vertices ikK’. We often favor the abstract view in whichpasimplex is
just a collection ofp 4+ 1 points, a face is simply a subset, and a simplicial complex
is a finite system of such collections closed under the sulesaion. For every finite
abstract simplicial complex, there is a large enough finiteethsion,d, such that the
complex can be realized as a simplicial compleRih For exampled equal to one plus
twice the largest dimension of any simplex is always sufficid@he primary use of a
simplicial complex is to construct or represent a topolabspace. Itsinderlying space

is the subset oR? covered by the simplices, together with the topology irteerfrom

R?. Finally, K triangulatesa topological space if its underlying space is homeomorphic
to that topological space.

A computationally efficient approach to classifying topgilmal spaces is based on
homology group$9]. For a given space, there is one group for each dimensicap-
turing, in some sense, the holes wiHdimensional boundaries. We use modulo-2 arith-
metic and thus get homology groups isomorphiZ{@Z to some non-negative integer
power. That power is thenk of the group and thg-th Betti numbenof the topological
space. The classification of spaces by homology groupsi@slstroarser than by ho-
motopy type. It follows that two spaces with the same homptgpe have isomorphic
homology groups, of all dimensions. Building a simpliciahgplex incrementally and
writing down the result at every stage, we get a nested segusErcomplexes,

=KoCcK)yC...CK,=K,

which we refer to as filtration of X'. The inclusionk; C K; induces a homomorphism
from thep-th homology group of{; to thep-th homology group of<;, for everyp > 0.

We refer to the image of the homomorphism gseasistent homology grougnd to its
rank as gpersistent Betti numbefFor more information on these groups we refer to
[10, 11].

Cech and Alpha Complexes. There are but a few complexes that have been used
to turn a finite set of points into a multi-scale represeotatif the space from which



the points are sampled. Perhaps the oldest constructitie isdrve of a collection of
spherical neighborhoods, one about each data point. Tealarerthis idea, lef. C R?
be a finite set of points.

Definition. For any real numbet > 0, the Cech complexf L, Cech(«), consists of
all simplicess C L for which there exists a point € R? such that|z — k|| < «, for
all verticesk € o.

The Nerve Lemma implies th&tech(a) has the same homotopy type as the union of
the balls with radiugy and centered at points ia[12]. A similar construction requires,
in addition, thatr be closest to and equally far from the relevant data poirts [2

Definition. For any real numbex > 0, thealpha complexf L, Alpha(«), consists of
all simpliceso C L for which there exists a point € R¢ such that|z — k|| < o and
|z — k| <|lz—¢|,forallk € cand all{ € L.

Equivalently,Alpha(«) is the nerve of the collection of balls of radiuseach clipped
to within the Voronoi cell of its center. The Nerve Lemma ieplthatAlpha(«) also
has the homotopy type of the union of balls. In summaityha(«) is a subcomplex of
Cech (o) and the two have the same homotopy type, for every 0. Alpha complexes
are more efficient tha@Gech complexes but require the evaluation of a more contptica
geometric primitive. Fory = oo, we have the nerve of the collection of Voronoi cells,
also known as thBelaunay complerf L, Delaunay = Alpha(oco) [13].

Almost Alpha Complexes. We interpolate betweeGech and alpha complexes using
a second parametet,

Definition. For any real numbers, 5 > 0, the almost alpha complexAA(«, 53),
consists of the simplices C L for which there exists a point € R such that
|z — k|| < cand||z — k||* < ||z — €] + 52, forall k € cand all € L.

As suggested by the name, these complexes are similar tafteuedt from the almost
Delaunay complexes introduced in [14]. For> «, the second constraint is redun-
dant, and fors = 0, it requires that: be equidistant from alk € ¢. In other words,
AA(a,a) = Cech(a) andAA(a,0) = Alpha(a). Lettingr be the maximum distance
betweenr and a verteX < o, the conditions in the above definition can be rewritten as
12— 32 < |z —k|® <a?forallk € o,andr? — 32 < ||lz — ¢|, forall{ € L — 0.
As illustrated in Fig.1, this is equivalent to all verticelsmo belonging to an annulus
centered at: and all points ofl. lying on or outside the inner sphere of this annulus.
There is a dual geometric interpretation that is also usegtlay («) be the closed
ball with centelk: and radiusy, and writea,, (o) for the common intersection of the balls
ax (), for k € o. Similarly, letd, (3) be the closed half-space of points whose square
distance td: exceeds that té by at most3?, and writeb,, ,,(3) for the common inter-
section of the half-spacég ((3), for k € o and? € v. Theno belongs toAA(a, )
iff region, (a, 3) = ac(a) N b, (3) is non-empty. But this region is the intersection
of the regions of its verticesegion, (o, ) = (¢, region,(«, ), as illustrated in
Fig.1. Hence AA(«, 3) is the nerve of the regions of the vertices. Independerit, of
the union of these regions is the union of balls of radiusame as for th€ech and the



Fig. 1: The outer circle of the annulus centered &ias radiusy and the inner circle has square
radiusr? — 32 < o — 2. The region of points: that witness the membership of the highlighted
triangle in AA(«, 8) is the common intersection of the regions of its three vestie@ach the
intersection of the outer disk with a convex polygon.

alpha complexes. Indeed,only controls the amount of overlap between the regions,
which increases with increasinty Since the regions are convex, the Nerve Lemma im-
plies that the homotopy type &fA («, 3) is the same as that of the union of balls. We
summarize,

Alpha(a) C AA(a,f) Cech(a), 1)
Alpha(a) ~ AA(a,3) =~ Cech(a), (2)

N

i
2

forall o, 5 > 0.

3 Alpha-Beta Witness Complexes

The almost alpha complexes have witness versions obtaynedllecting all simplices
whose regions contain at least one of a finite set of samplietigod his construction is
problematic for small values df, for which the regions of the vertices have only small
overlap. Following de Silva [4], we introduce the concepaafeak witness and show
that the resulting witness complexes are better approiomabf the complexes than
the mentioned witness versions.

Weak and Strong Witnesses.The general set-up consists of a finite S&etC R? of
witnessesand another, usually smaller finite setC R¢ of landmarks We consider
complexes ovel. consisting of simplices that have the backing of witnesgeX i
Specifically, we call: € X aweak(q, §)-withessof o C L if

[N ||z —k| < «,forallk € o,and
0 Jlz—k|* < |lz—¢*+p%forallk e candalll € L — o.

Equivalentlyx belongs tai, (o) N by, 1,—o(5). We call a weaKa, 3)-witness astrong
(o, B)-witnessif the inequality in Condition [l] holds for alk € o and all¢ € L or,



equivalently, ifz € a,(a) N by (5). The difference is in the set of landmarks that
compete with the vertices of. For a weak witness this set excludes the vertices of
which therefore do not compete with each other. This subfferdnce has important
consequences.

Definition. For any real numbersy, 3 > 0, the alpha-beta witness complex
Witness(a, 3), consists of the simplices C L such that every face < o has a
weak(«, §)-witness inX.

Condition [ll] is redundant unless exceedss so we restrict th@-parameter family to
0 < B < a < oco. With increasing value ofv and, independently, of, the require-
ments for being a weak witness get more tolerant, which mespWVitness(«, 3) C
Witness(/, 5') whenevery < o/ andg < .

Witness Complexes in the Limit. Similar to almost alpha complexes, the alpha-beta
witness complexes have a nice geometric interpretationd&geribe it in the full ver-
sion of the paper, where we also show how to extend de Silessltr on Delaunay
triangulations to almost alpha complexes. In particul&@ prove that the existence of a
weak (a, 3)-witness for each face implies the existence of a strieng)-witness for

the simplex. In other words, X = R¢ then the alpha-beta witness complex is the same
as the almost alpha complex.

Weak Almost Alpha Theorem. If X = R9 thenWitness(a, 3) = AA(a, B).

For finite setsX, the alpha-beta withess complex can only be smaller than for

X = R4, which impliesWitness(a, 3) € AA(a, 3). This should be contrasted with
the fact that a strong witness for a simplex is a weak witnessalf faces of the simplex.
Hence, the witness version of the almost alpha complex, wbatlects all simplices
with strong(«, 3)-witnesses inX, is a subcomplex oWVitness(a, 3). By (2), the ho-
motopy type of the almost alpha complex does not depeng. dmy variation in the
homotopy type of the alpha-beta witness complex for fixedeaf o must therefore

be attributed to insufficient sampling.

4 2-parameter Family

In this section, we focus on the family of witness complexiescribing properties in
terms of subdivisions of the parameter plane. In this plangomts («, 3) the balls
grow from left to right and the Voronoi cells grow from bottotm top. Potentially
interesting sub-families arise as horizontal and vertinak but also as 45-degree lines
along which the balls and cells grow at the same rate.

Comparison with Prior Notions. Several versions of witness complexes have been de-
fined in [5]. We compare them with tteeparameter family, limiting ourselves t@ech-
like constructions. We start with the first version introdddy de Silva and Carlsson.

Definition. The strict withess compleXV.,, consists of the simplices C L whose
faces belong téV ., and for which there exists a withess= X such that



[S] ||l — k| < ||z —¢||, forallk € candalll € L — o.

Condition [S] is the same as Condition [IlI] fgt = 0. There is no counterpart to
[1] but we can make this condition redundant by setting= oo. In other words,
W+ = Witness(oo, 0) in our family, as indicated in Fig.2. To introduce the otheete
constructions in [5], lep be the dimension of anddist;(z) the distance of € X
from its j-nearest landmark point. Using a non-negative real paemgtve get three
1-parameter families of withess complexes, each obtainesibgtituting one of

[0] ||x — k|| < R, for all verticesk € o;
[1] ||lx — k|| < R+ disty (), for all verticesk € o;
[A] ||z — k|| < R+ disty+1(x), for all verticesk € o;

for Condition [S] in the definition ofV,. Following [5], we denote the members of the
three families asV(R,0), W(R, 1), andW (R, A). The members of the first family
are the witness versions of tltech complexiV (R, 0) = Witness(R, R). ForR = 0

in the second family, we getiasimplexo iff there is a witness in the intersection of the
p+ 1 Voronoi cells of its vertices, which happens with probapill unlesp = 0. As R
increases, we get more tolerant about the precise locatithre avitness. Equivalently,
we can think of growing the Voronoi cells and adding a simphhenever we find
a witness in the common intersection of the enlarged celtg &ffect of increasing
R is therefore similar to that of increasimgin Condition [II], although the enlarged
cells have different shape. Conditiod] is less restrictive than Conditiorl] so we
haveW (R,1) C W(R, A). We can interpret4] in terms of growing ordefp + 1)
Voronoi cells. This makes the complexes in the third famalgher similar to alpha-beta
witness complexes far = oo, although the geometric details are again different. The
growth prescribed by Condition [lI] is milder and more catiied than that prescribed
by Condition [A]. Indeed, we hav&Vitness(oo, R) C W(R, A) , forall R > 0. To see
this, consider Conditions [II] and] for a withessz and ap-simplexo. If the p + 1
vertices ofo are thep + 1 closest landmarks thenando satisfy both conditions for all
values of3 andR. Otherwise, the smallest distance frerto a landmark notingo is at
mostdist, 1 (z). For3 = R, Condition [II] is equivalent td|z — k| < R2+|jz —¢|f
forall¢ € L —o. It follows that||z — k|| < R2 +dist§+1(a:) which implies Condition
[A]. The containment relation cannot be reversed, meaning th@o positive constant
¢ such thatV (R, A) is necessarily a subcomplex @fitness(co, cR).

Birthline Subdivision. We decompose the parameter plane into maximal regiongwithi
which the alpha-beta witness complexes are the same. Ropthpose, we introduce
two collections of functionsd,, Bs,, : R? — R, defined by

Ag () = max |z — k||*
Bg.o(x) = max ||z — k||* — min ||z — £]°.
’ k€o lev

Both are convex. It follows that their sublevel sets are esxmegions, namely the inter-
sections of balls and half-spaces used earli¢f'(—c0,a?] = a,(a) and
B, L(—00, 3% = b,.(3). Hence, a point: € X is a weak(a, 3)-witness foro iff

o,v
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Fig. 3: Since vertices have no proper faces,
Q(k,X) andQ(¢, X) are unions of quad-
rants. For the edge) (k¢, X) is the portion

of its union of quadrants insid&(k, X)
andQ (¢, X).

Ay(z) < @* and B, —(x) < . The two conditions are independent implying the
set of points(a?, 3%) whose coordinates satisfy them form an upper right quadrant
which we denote&) (o, z). Sinces can have more than one weak witness, we consider
the union of quadrants they define, and since we require adisfafo to have weak
witnesses, we take the intersection of these unions,

Q(O',X): ﬂ <U Q(T,I)),

<o \zeX

calling its boundary thdirthline of o. It decomposes the parameter plane into two
regions such that belongs toWitness(«, 3) iff the point (a2, %) lies on or to the
upper right of the birthline; see Fig.3.

The birthlines decompose the parameter plane intbittieline subdivisiorconsist-
ing of maximal regions within which the alpha-beta withesmplexes are the same.
Neighboring regions are separated by curves, each belpitgione or more birthlines.
Curves meet at common endpoints where birthlines mergessscCurves that belong
to two or more birthlines are common, even in the generic.dasa typical example,
the witness complexes in two neighboring regions differ lmplapse, which consists
of all faces of a simplex that are cofaces of a proper face atf shmplex. A collapse
does not affect the homotopy type of the complex, implyingt tive get isomorphic
homology groups in the two regions, for all dimensions.

5 Algorithms

We focus on algorithms that construct the family rather timalividual alpha-beta wit-
ness complexes. We begin by constructing the birthline isigian of the parameter
plane, which we use as a representation of the family. Wedissuss an algorithm for



computing the homology of the complexes in the family. To@sttpatterns we consider
classes that persist while we vary the two parameters.

Constructing Birthlines. Recall that ap-simplexos and a witness: define a quad-
rant above and to the right of its corner point. The first cowatk of the corner is
A, () = maxpeo ||z — k||>. To get the second coordinate, we find the sep af 1
landmarks closest to and distinguish between two cases. If this set ihenx is a
weak witness ot for all values of3 so the second coordinate of the corner is zero.
Else this set contains a closest landménot in o and we get the second coordinate
as By _o(x) = As(z) — ||z — £]>. Clearly these computations benefit from a data
structure that provides fast access to the landmarks naserg goint. There are many
data structures available for this task and we refer to Irjdgk for a recent survey of
this literature. The union of the quadrari$o, =), over all witnesses;, is the lower
staircase of their corner points. Constructing this séeiecis another classic problem
in computational geometry [16]. There are many fast metldsading a plane-sweep
algorithm that constructs the staircase from left to rigtitis algorithm is convenient
for our purposes since it can be reused to compute the bietbfic as the upper enve-
lope of the staircases of all facesafFinally, we use the plane-sweep algorithm a third
time to convert the collection of birthlines into the biitid subdivision. Alternatively,
we can do all three plane-sweeps in one, constructing ttidibe subdivision directly
from the corner points of the quadrants.

What we described is hardly the most efficient method to caosthe birthline
subdivision. In particular, we expect that most of the qaath are redundant. It would
be interesting to prove bounds on the output size, the nuofiedges in the birthline
subdivision, and to find an algorithm that avoids lookingedundant quadrants and
achieves a running time sensitive to the output size.

Computing Homology. We now describe an algorithm that computes jkt Betti
number for each region in the subdivision. It does this fbvalues ofp. The main idea

is to explore the parameter plane in a topological sweepdithences a directed path
connecting the start-poinf0, 0), with the end-point(co, oo), while remaining mono-
tonically non-decreasing in both parameters at all timeigally, the path follows the
lower edge of the parameter plane, fréin0) to (oo, 0), and then the right edge, from
(00, 0) to (00, o). We represent this combinatorially by the sequence of soapla-
beling the birthlines the path crossesnifdenotes the number of landmarks, we go
from the empty complex g0, 0) to them-simplex at(co, oo), which implies that the
sequence contains all = 2™ simplices spanned by the landmark points. An elemen-
tary move pushes the path locally across a vertex of the gisiah. This correspondsto
locally reordering the simplices, which we do one trangjpmsiat a time. After process-
ing all transpositions, we arrive at the final path, whichdak the diagonal fronf0, 0)

to (o0, 00). The purpose of the sweep is to compute the Betti numberseafetiions,
which we do using the algorithm in [10] for the initial seqeerand the algorithm in
[17] to update the information for each transposition. iworst case, the initialization
takes time cubic in/ and each transposition takes time lineafin



The algorithm’s biggest impediment is the large size of thmplex at(co, c0). To
make it feasible for landmark sets that are not very smallcheose an upper bound
b for . Shrinking the parameter domain this way seems appropsiate« and
play fundamentally different roles. The first parametecontrols the resolution of the
reconstruction, allowing small features to form for smaland letting gross features
take over for largex. The second paramete?, controls how tolerantly we interpret
witnesses. The strict interpretation @t= 0 combined with occasional gaps in the
distribution of witnesses leads to holes caused by spaliglimissing simplices. The
findings in [5] suggest that small non-zero valuesso$uffice to repair these holes.
Although our mathematical formulation of tolerance is eliffint from that paper, we
expect the same holds for alpha-beta witness complexes.

Persistence.We now address the question of how to read the Betti numbéng ddm-
ily represented by the birthline subdivision. We are natidfinding the “best” complex
since we cannot expect that a single complex would conthintaresting patterns in
the data. Since these patterns are expressed at diffeeatiecels a simultaneous rep-
resentation may indeed be impossible. Instead, we arergdé&r homology classes that
persist whilea and 5 vary. Ideally, we would like to define a notion of two-parasret
persistence but there are algebraic difficulties [18]. Wadfore fall back on the one-
parameter notion introduced in [10] which measures thetleafithe interval in a path
along which a homology class persists. Since the scale igwentrolled solely by
it makes sense to draw the path horizontally in the paranpgere so that persistence
captures scale. In other words, the directed path used icaimgputation of homology
sweeps the parameter plane from bottom to top. More prggiselgradually increase
3 from 0 to b and restrict the path to two turns, ong &t, 3?) and the other atx, 3?),
with a horizontal line in between. To simulate monotonicitich is necessary to re-
duce the sweep to transpositions, we advance the horidoredly processing the si-
multaneous elementary moves from right to left. For eachevaf 5 we can visualize
the persistence information in a two-dimensional diagrardefined in [19]. Each ho-
mology class is represented by a point whose first coordmaté&s its birth and whose
second coordinate marks its death. Since birth occurs &efath this point lies above
the diagonal and its vertical distance from the diagondsigersistence

As proved by Cohen-Steiner et al. [19], small changes in timetfon cause only
small changes in the diagram. In the case at hand, the funtithe value ofx at
which a simplex is added to the withess complex. Afcreases the value af at
which the simplex enters stays the same or decreases. Thgeshaorrespond to the
steps in the birthlines and are therefore not continuousstidbthe time the steps are
small but not always. In particular the first step at whichragéex is introduced can be
large. Nevertheless it is useful to stack up the persistdiamyams and to describe the
evolution of a homology class as a possibly discontinuougecin three-dimensional
space. In a context in which these curves are continuoushtévey been referred to as
vinesforming a collection called gineyard[17]. The vineyard of the family of alpha-
beta complexes enhances the visualization of persistenblogy classes by showing
how the persistence changes with varyjngthe amount of tolerance with which we
recognize a witness of a simplex.



6 Questions and Extensions

We conclude this paper with a list of open questions and st for further research
motivated by our desire to improve the algorithms.

Can we take advantage of the hole repairing quality efithout paying the high
price of exploding humbers of simplices? Evidence in suppbtthis possibility is
that an overwhelming majority of changes caused by incngasare collapses, which
preserve the homotopy type. This is consistent with ourmasien that in the limit, for
X = R4, the homotopy type oWitness(a, 3) is independent of.

Under reasonable assumptions on the distribution of wsemand landmarks, what
is the expected size of the alpha-beta witness complex ascéidn of « and5? Simi-
larly, what is the expected number of corners per birthliméwhat is the expected size
of the birthline subdivision?

There are strong parallels between work on witness complemd on surface and
shape reconstruction. Are there versions of withess coraplanalogous to the Wrap
complex [20], which may be viewed as following Forman'’s theof discrete Morse
functions [21]? Similarly, are there relaxations of thehalgbeta withess complexes akin
to the independent complexes studied in [22]?

Data sets are often contained in subspace of Euclidean.dpacent work in this di-
rection proves that every smoothly embedded compact mdmifaimensionl or 2 in
R? has sufficiently fine samplings of landmarks and witnessels thatWitness(oo, 0)
is homeomorphic to the manifold [23]. A counterexample tteaging this result to
manifolds of dimensiom or higher is described in [24]. The counterexample is based
on slivers, very flat tetrahedra in the Delaunay triangatatsuggesting the use of sliver
exudation methods to remedy the situation [25]. It wouldrieriesting to extend these
results to samplings of submanifolds in which density &g encode important in-
formation about the data.
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