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Abstract. Building on the work of Martinetz, Schulten and de Silva, Carlsson,
we introduce a2-parameter family of witness complexes and algorithms for con-
structing them. This family can be used to determine the gross topology of point
cloud data inRd or other metric spaces. The2-parameter family is sensitive to
differences in sampling density and thus amenable to detecting patterns within
the data set. It also lends itself to theoretical analysis. For example, we can prove
that in the limit, when the witnesses cover the entire domain, witness complexes
in the family that share the first, scale parameter have the same homotopy type.

1 Introduction

The analysis of large data sets is a paradigm of growing importance in the sciences.
Broad advances in technology are leading to ever larger datasets capturing informa-
tion in unprecedented detail. Examples are micro-arrays that probe gene activity for
entire genomes and sensor networks that challenge our ability to integrate time-series
of distributed measurements. After distilling such data and giving it a geometric inter-
pretation as a point cloud in possibly high-dimensional ambient space, we are faced
with the problem of extracting properties of that cloud, such as its gross topology, vari-
ous patterns within it, or its geometric shape. We see the study of these point clouds as
an extension of the reconstruction of surfaces from point clouds inR

3; see the recent
monograph on this topic [1].

In this paper we adopt the point of view that the goal is not thereconstruction of a
unique shape but rather a hierarchy that captures the data atdifferent scale levels. In this
we are inspired by the work on alpha shapes where scale is captured by the radius of the
spherical neighborhoods defined around the data points [2].Our point of departure is in
the method of reconstruction. Instead of appealing to the metric of the ambient space
we use the data itself to drive the formation of the family of complexes. Specifically,
we distinguish data points by the way we use them: thelandmarksform the vertices
of the complexes we build and thewitnessesprovide support for simplices we add to
connect the vertices. This idea can be traced back to the topology adapting networks
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of Martinetz and Schulten [3], who draw an edge between two landmarks if there is a
witness for which they are the two nearest. We may interpret the witness as a proof for
the edge to belong to the Delaunay triangulation of the landmark points. Unfortunately,
a witness is not proof for its three nearest landmarks forming a triangle in the Delaunay
triangulation. The resulting impasse was overcome for ordinary Delaunay triangula-
tions by de Silva [4]. He proved that if for every subset ofp + 1 landmarks there is a
witness for which the points in the subset are at least as close as any other landmarks,
then this is a proof for thep+1 landmarks to form ap-simplex in the Delaunay triangu-
lation. This insight motivated de Silva and Carlsson to introduce a generalization of the
Martinetz-Schulten networks to two- and higher-dimensional complexes [5]. They used
their new tool to study the picture collection of van Haterenand van der Schaaf [6],
also considered by Lee, Pedersen and Mumford [7]. The main insight from their work
is that a majority of small pixel subarrays can be parametrized on a (two-dimensional)
Klein bottle in7-dimensional ambient space [8].

If the witness complex is patterned after the Delaunay triangulation, why do we not
just construct the latter? There is a variety of reasons, including

– the size of the complex can be controlled by choosing the landmarks while not
ignoring the information provided by the possibly many moresample points;

– distances are easier to compute than the primitives required to construct Delaunay
triangulations;

– extending the definition of witness complexes to metric spaces different from Eu-
clidean spaces is comparatively straightforward;

all already mentioned in [5]. There are also significant drawbacks, such as the locally
imperfect reconstruction caused by the finiteness of the witness set. The main purpose
of this paper is to present methods that cope with the mentioned drawback of witness
complexes. Our main contributions are theoretical, in understanding the family of wit-
ness complexes and its algorithms. Specifically,

(i) we introduce a2-parameter family that contains prior witness complexes assub-
families;

(ii) we generalize de Silva’s result for Delaunay triangulations to witness complexes in
the limit;

(iii) we analyze the structure of the family of witness complexes by subdividing its
parameter plane;

(iv) we give algorithms to construct this subdivision, compute homology within it, and
visualize the result.

Methods that extract the multi-scale topological information along with computational
experiments will be presented elsewhere.

Outline. Section 2 presents the complexes after which we model our witness com-
plexes. Section 3 introduces the2-parameter family of witness complexes. Section 4
studies the family through subdivisions of the parameter plane. Section 5 describes al-
gorithms constructing alpha-beta witness complexes. Section 6 concludes the paper.



2 Complexes

In this section, we introduce the family of complexes that provide the intuition for our
witness complexes. The family contains the1-parameter families of̌Cech and alpha
complexes and uses a second parameter to interpolate between them. We begin with
definitions from algebraic topology.

Simplicial Complexes. The geometric notion of asimplex, σ, is the convex hull of a
collection of affinely independent points inRd. We say the pointsspanthe simplex.
If there arep + 1 points in the collection, we callσ a p-simplexandp = dimσ its
dimension. Any subset of thep + 1 points defines another simplex,τ ≤ σ, and we call
τ a faceof σ andσ acofaceof τ . A simplicial complexis a finite collection of simplices,
K, that is closed under the face relation and satisfies the extra condition that any two
of its simplices are either disjoint or their intersection is a face of both. Asubcomplex
is a simplicial complexK ′ ⊆ K. It is full if it contains all simplices inK exclusively
spanned by vertices inK ′. We often favor the abstract view in which ap-simplex is
just a collection ofp + 1 points, a face is simply a subset, and a simplicial complex
is a finite system of such collections closed under the subsetrelation. For every finite
abstract simplicial complex, there is a large enough finite dimension,d, such that the
complex can be realized as a simplicial complex inR

d. For example,d equal to one plus
twice the largest dimension of any simplex is always sufficient. The primary use of a
simplicial complex is to construct or represent a topological space. Itsunderlying space
is the subset ofRd covered by the simplices, together with the topology inherited from
R

d. Finally,K triangulatesa topological space if its underlying space is homeomorphic
to that topological space.

A computationally efficient approach to classifying topological spaces is based on
homology groups[9]. For a given space, there is one group for each dimensionp cap-
turing, in some sense, the holes withp-dimensional boundaries. We use modulo-2 arith-
metic and thus get homology groups isomorphic toZ/2Z to some non-negative integer
power. That power is therankof the group and thep-th Betti numberof the topological
space. The classification of spaces by homology groups is strictly coarser than by ho-
motopy type. It follows that two spaces with the same homotopy type have isomorphic
homology groups, of all dimensions. Building a simplicial complex incrementally and
writing down the result at every stage, we get a nested sequence of complexes,

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K,

which we refer to as afiltration of K. The inclusionKi ⊂ Kj induces a homomorphism
from thep-th homology group ofKi to thep-th homology group ofKj, for everyp ≥ 0.
We refer to the image of the homomorphism as apersistent homology groupand to its
rank as apersistent Betti number. For more information on these groups we refer to
[10, 11].

Čech and Alpha Complexes. There are but a few complexes that have been used
to turn a finite set of points into a multi-scale representation of the space from which



the points are sampled. Perhaps the oldest construction is the nerve of a collection of
spherical neighborhoods, one about each data point. To formalize this idea, letL ⊆ R

d

be a finite set of points.

Definition. For any real numberα ≥ 0, theČech complexof L, Čech(α), consists of
all simplicesσ ⊆ L for which there exists a pointx ∈ R

d such that‖x − k‖ ≤ α, for
all verticesk ∈ σ.

The Nerve Lemma implies thaťCech(α) has the same homotopy type as the union of
the balls with radiusα and centered at points inL [12]. A similar construction requires,
in addition, thatx be closest to and equally far from the relevant data points [2].

Definition. For any real numberα ≥ 0, thealpha complexof L, Alpha(α), consists of
all simplicesσ ⊆ L for which there exists a pointx ∈ R

d such that‖x − k‖ ≤ α and
‖x − k‖ ≤ ‖x − ℓ‖, for all k ∈ σ and allℓ ∈ L.

Equivalently,Alpha(α) is the nerve of the collection of balls of radiusα, each clipped
to within the Voronoi cell of its center. The Nerve Lemma implies thatAlpha(α) also
has the homotopy type of the union of balls. In summary,Alpha(α) is a subcomplex of
Čech(α) and the two have the same homotopy type, for everyα ≥ 0. Alpha complexes
are more efficient thaňCech complexes but require the evaluation of a more complicated
geometric primitive. Forα = ∞, we have the nerve of the collection of Voronoi cells,
also known as theDelaunay complexof L, Delaunay = Alpha(∞) [13].

Almost Alpha Complexes. We interpolate betweeňCech and alpha complexes using
a second parameter,β.

Definition. For any real numbersα, β ≥ 0, the almost alpha complex, AA(α, β),
consists of the simplicesσ ⊆ L for which there exists a pointx ∈ R

d such that
‖x − k‖ ≤ α and‖x − k‖2 ≤ ‖x − ℓ‖2

+ β2, for all k ∈ σ and allℓ ∈ L.

As suggested by the name, these complexes are similar to but different from the almost
Delaunay complexes introduced in [14]. Forβ ≥ α, the second constraint is redun-
dant, and forβ = 0, it requires thatx be equidistant from allk ∈ σ. In other words,
AA(α, α) = Čech(α) andAA(α, 0) = Alpha(α). Lettingr be the maximum distance
betweenx and a vertexk ∈ σ, the conditions in the above definition can be rewritten as
r2 − β2 ≤ ‖x − k‖2 ≤ α2, for all k ∈ σ, andr2 − β2 ≤ ‖x − ℓ‖2, for all ℓ ∈ L − σ.
As illustrated in Fig.1, this is equivalent to all vertices of σ belonging to an annulus
centered atx and all points ofL lying on or outside the inner sphere of this annulus.

There is a dual geometric interpretation that is also useful. Let ak(α) be the closed
ball with centerk and radiusα, and writeaσ(α) for the common intersection of the balls
ak(α), for k ∈ σ. Similarly, letbk,ℓ(β) be the closed half-space of points whose square
distance tok exceeds that toℓ by at mostβ2, and writebσ,υ(β) for the common inter-
section of the half-spacesbk,ℓ(β), for k ∈ σ andℓ ∈ υ. Thenσ belongs toAA(α, β)
iff regionσ(α, β) = aσ(α) ∩ bσ,L(β) is non-empty. But this region is the intersection
of the regions of its vertices,regionσ(α, β) =

⋂

k∈σ regionk(α, β), as illustrated in
Fig.1. Hence,AA(α, β) is the nerve of the regions of the vertices. Independent ofβ,
the union of these regions is the union of balls of radiusα, same as for thěCech and the
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Fig. 1: The outer circle of the annulus centered atx has radiusα and the inner circle has square
radiusr2

−β2
≤ α2

−β2. The region of pointsx that witness the membership of the highlighted
triangle inAA(α, β) is the common intersection of the regions of its three vertices, each the
intersection of the outer disk with a convex polygon.

alpha complexes. Indeed,β only controls the amount of overlap between the regions,
which increases with increasingβ. Since the regions are convex, the Nerve Lemma im-
plies that the homotopy type ofAA(α, β) is the same as that of the union of balls. We
summarize,

Alpha(α) ⊆ AA(α, β) ⊆ Čech(α), (1)

Alpha(α) ≃ AA(α, β) ≃ Čech(α), (2)

for all α, β ≥ 0.

3 Alpha-Beta Witness Complexes

The almost alpha complexes have witness versions obtained by collecting all simplices
whose regions contain at least one of a finite set of sampled points. This construction is
problematic for small values ofβ, for which the regions of the vertices have only small
overlap. Following de Silva [4], we introduce the concept ofa weak witness and show
that the resulting witness complexes are better approximations of the complexes than
the mentioned witness versions.

Weak and Strong Witnesses.The general set-up consists of a finite setX ⊆ R
d of

witnessesand another, usually smaller finite setL ⊆ R
d of landmarks. We consider

complexes overL consisting of simplices that have the backing of witnesses in X .
Specifically, we callx ∈ X a weak(α, β)-witnessof σ ⊆ L if

[I] ‖x − k‖ ≤ α, for all k ∈ σ, and
[II] ‖x − k‖2 ≤ ‖x − ℓ‖2

+ β2, for all k ∈ σ and allℓ ∈ L − σ.

Equivalently,x belongs toaσ(α) ∩ bσ,L−σ(β). We call a weak(α, β)-witness astrong
(α, β)-witnessif the inequality in Condition [II] holds for allk ∈ σ and allℓ ∈ L or,



equivalently, ifx ∈ aσ(α) ∩ bσ,L(β). The difference is in the set of landmarks that
compete with the vertices ofσ. For a weak witness this set excludes the vertices ofσ
which therefore do not compete with each other. This subtle difference has important
consequences.

Definition. For any real numbersα, β ≥ 0, the alpha-beta witness complex,
Witness(α, β), consists of the simplicesσ ⊆ L such that every faceτ ≤ σ has a
weak(α, β)-witness inX .

Condition [II] is redundant unlessα exceedsβ so we restrict the2-parameter family to
0 ≤ β ≤ α ≤ ∞. With increasing value ofα and, independently, ofβ, the require-
ments for being a weak witness get more tolerant, which impliesWitness(α, β) ⊆
Witness(α′, β′) wheneverα ≤ α′ andβ ≤ β′.

Witness Complexes in the Limit. Similar to almost alpha complexes, the alpha-beta
witness complexes have a nice geometric interpretation. Wedescribe it in the full ver-
sion of the paper, where we also show how to extend de Silva’s result on Delaunay
triangulations to almost alpha complexes. In particular, we prove that the existence of a
weak(α, β)-witness for each face implies the existence of a strong(α, β)-witness for
the simplex. In other words, ifX = R

d then the alpha-beta witness complex is the same
as the almost alpha complex.

Weak Almost Alpha Theorem. If X = R
d thenWitness(α, β) = AA(α, β).

For finite setsX , the alpha-beta witness complex can only be smaller than for
X = R

d, which impliesWitness(α, β) ⊆ AA(α, β). This should be contrasted with
the fact that a strong witness for a simplex is a weak witness for all faces of the simplex.
Hence, the witness version of the almost alpha complex, which collects all simplices
with strong(α, β)-witnesses inX , is a subcomplex ofWitness(α, β). By (2), the ho-
motopy type of the almost alpha complex does not depend onβ. Any variation in the
homotopy type of the alpha-beta witness complex for fixed value ofα must therefore
be attributed to insufficient sampling.

4 2-parameter Family

In this section, we focus on the family of witness complexes,describing properties in
terms of subdivisions of the parameter plane. In this plane of points (α, β) the balls
grow from left to right and the Voronoi cells grow from bottomto top. Potentially
interesting sub-families arise as horizontal and verticallines but also as 45-degree lines
along which the balls and cells grow at the same rate.

Comparison with Prior Notions. Several versions of witness complexes have been de-
fined in [5]. We compare them with the2-parameter family, limiting ourselves tǒCech-
like constructions. We start with the first version introduced by de Silva and Carlsson.

Definition. Thestrict witness complex, W∞, consists of the simplicesσ ⊆ L whose
faces belong toW∞ and for which there exists a witnessx ∈ X such that



[S] ‖x − k‖ ≤ ‖x − ℓ‖, for all k ∈ σ and allℓ ∈ L − σ.

Condition [S] is the same as Condition [II] forβ = 0. There is no counterpart to
[I] but we can make this condition redundant by settingα = ∞. In other words,
W∞ = Witness(∞, 0) in our family, as indicated in Fig.2. To introduce the other three
constructions in [5], letp be the dimension ofσ anddistj(x) the distance ofx ∈ X
from its j-nearest landmark point. Using a non-negative real parameterR, we get three
1-parameter families of witness complexes, each obtained bysubstituting one of

[0] ‖x − k‖ ≤ R, for all verticesk ∈ σ;
[1] ‖x − k‖ ≤ R + dist1(x), for all verticesk ∈ σ;
[∆] ‖x − k‖ ≤ R + distp+1(x), for all verticesk ∈ σ;

for Condition [S] in the definition ofW∞. Following [5], we denote the members of the
three families asW (R, 0), W (R, 1), andW (R, ∆). The members of the first family
are the witness versions of theČech complex,W (R, 0) = Witness(R, R). ForR = 0
in the second family, we get ap-simplexσ iff there is a witness in the intersection of the
p+1 Voronoi cells of its vertices, which happens with probability 0 unlessp = 0. AsR
increases, we get more tolerant about the precise location of the witness. Equivalently,
we can think of growing the Voronoi cells and adding a simplexwhenever we find
a witness in the common intersection of the enlarged cells. The effect of increasing
R is therefore similar to that of increasingβ in Condition [II], although the enlarged
cells have different shape. Condition [∆] is less restrictive than Condition [1] so we
haveW (R, 1) ⊆ W (R, ∆). We can interpret [∆] in terms of growing order-(p + 1)
Voronoi cells. This makes the complexes in the third family rather similar to alpha-beta
witness complexes forα = ∞, although the geometric details are again different. The
growth prescribed by Condition [II] is milder and more controlled than that prescribed
by Condition [∆]. Indeed, we haveWitness(∞, R) ⊆ W (R, ∆) , for all R ≥ 0. To see
this, consider Conditions [II] and [∆] for a witnessx and ap-simplexσ. If the p + 1
vertices ofσ are thep+1 closest landmarks thenx andσ satisfy both conditions for all
values ofβ andR. Otherwise, the smallest distance fromx to a landmarkℓ not inσ is at
mostdistp+1(x). Forβ = R, Condition [II] is equivalent to‖x − k‖2 ≤ R2+‖x − ℓ‖2

for all ℓ ∈ L−σ. It follows that‖x − k‖2 ≤ R2 +dist2p+1(x) which implies Condition
[∆]. The containment relation cannot be reversed, meaning there is no positive constant
c such thatW (R, ∆) is necessarily a subcomplex ofWitness(∞, cR).

Birthline Subdivision. We decompose the parameter plane into maximal regions within
which the alpha-beta witness complexes are the same. For this purpose, we introduce
two collections of functions,Aσ, Bσ,υ : R

d → R, defined by

Aσ(x) = max
k∈σ

‖x − k‖2
;

Bσ,υ(x) = max
k∈σ

‖x − k‖2 − min
ℓ∈υ

‖x − ℓ‖2.

Both are convex. It follows that their sublevel sets are convex regions, namely the inter-
sections of balls and half-spaces used earlier,A−1

σ (−∞, α2] = aσ(α) and
B−1

σ,υ(−∞, β2] = bσ,υ(β). Hence, a pointx ∈ X is a weak(α, β)-witness forσ iff
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Fig. 2: The parameter plane of alpha-beta
witness complexes. We find thěCech and
alpha complexes and the witness complexes
of de Silva and Carlsson along the edges of
the triangle.
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Fig. 3: Since vertices have no proper faces,
Q(k, X) andQ(ℓ,X) are unions of quad-
rants. For the edge,Q(kℓ, X) is the portion
of its union of quadrants insideQ(k, X)
andQ(ℓ,X).

Aσ(x) ≤ α2 andBσ,L−σ(x) ≤ β2. The two conditions are independent implying the
set of points(α2, β2) whose coordinates satisfy them form an upper right quadrant
which we denoteQ(σ, x). Sinceσ can have more than one weak witness, we consider
the union of quadrants they define, and since we require all faces ofσ to have weak
witnesses, we take the intersection of these unions,

Q(σ, X) =
⋂

τ≤σ

(

⋃

x∈X

Q(τ, x)

)

,

calling its boundary thebirthline of σ. It decomposes the parameter plane into two
regions such thatσ belongs toWitness(α, β) iff the point (α2, β2) lies on or to the
upper right of the birthline; see Fig.3.

The birthlines decompose the parameter plane into thebirthline subdivisionconsist-
ing of maximal regions within which the alpha-beta witness complexes are the same.
Neighboring regions are separated by curves, each belonging to one or more birthlines.
Curves meet at common endpoints where birthlines merge or cross. Curves that belong
to two or more birthlines are common, even in the generic case. In a typical example,
the witness complexes in two neighboring regions differ by acollapse, which consists
of all faces of a simplex that are cofaces of a proper face of that simplex. A collapse
does not affect the homotopy type of the complex, implying that we get isomorphic
homology groups in the two regions, for all dimensions.

5 Algorithms

We focus on algorithms that construct the family rather thanindividual alpha-beta wit-
ness complexes. We begin by constructing the birthline subdivision of the parameter
plane, which we use as a representation of the family. We thendiscuss an algorithm for



computing the homology of the complexes in the family. To extract patterns we consider
classes that persist while we vary the two parameters.

Constructing Birthlines. Recall that ap-simplexσ and a witnessx define a quad-
rant above and to the right of its corner point. The first coordinate of the corner is
Aσ(x) = maxk∈σ ‖x − k‖2. To get the second coordinate, we find the set ofp + 1
landmarks closest tox and distinguish between two cases. If this set isσ thenx is a
weak witness ofσ for all values ofβ so the second coordinate of the corner is zero.
Else this set contains a closest landmarkℓ not in σ and we get the second coordinate
asBσ,L−σ(x) = Aσ(x) − ‖x − ℓ‖2. Clearly these computations benefit from a data
structure that provides fast access to the landmarks near a query point. There are many
data structures available for this task and we refer to Indyk[15] for a recent survey of
this literature. The union of the quadrantsQ(σ, x), over all witnessesx, is the lower
staircase of their corner points. Constructing this staircase is another classic problem
in computational geometry [16]. There are many fast methodsincluding a plane-sweep
algorithm that constructs the staircase from left to right.This algorithm is convenient
for our purposes since it can be reused to compute the birthline ofσ as the upper enve-
lope of the staircases of all faces ofσ. Finally, we use the plane-sweep algorithm a third
time to convert the collection of birthlines into the birthline subdivision. Alternatively,
we can do all three plane-sweeps in one, constructing the birthline subdivision directly
from the corner points of the quadrants.

What we described is hardly the most efficient method to construct the birthline
subdivision. In particular, we expect that most of the quadrants are redundant. It would
be interesting to prove bounds on the output size, the numberof edges in the birthline
subdivision, and to find an algorithm that avoids looking at redundant quadrants and
achieves a running time sensitive to the output size.

Computing Homology. We now describe an algorithm that computes thep-th Betti
number for each region in the subdivision. It does this for all values ofp. The main idea
is to explore the parameter plane in a topological sweep thatadvances a directed path
connecting the start-point,(0, 0), with the end-point,(∞,∞), while remaining mono-
tonically non-decreasing in both parameters at all times. Initially, the path follows the
lower edge of the parameter plane, from(0, 0) to (∞, 0), and then the right edge, from
(∞, 0) to (∞,∞). We represent this combinatorially by the sequence of simplices la-
beling the birthlines the path crosses. Ifm denotes the number of landmarks, we go
from the empty complex at(0, 0) to them-simplex at(∞,∞), which implies that the
sequence contains allM = 2m simplices spanned by the landmark points. An elemen-
tary move pushes the path locally across a vertex of the subdivision. This corresponds to
locally reordering the simplices, which we do one transposition at a time. After process-
ing all transpositions, we arrive at the final path, which follows the diagonal from(0, 0)
to (∞,∞). The purpose of the sweep is to compute the Betti numbers of the regions,
which we do using the algorithm in [10] for the initial sequence and the algorithm in
[17] to update the information for each transposition. In the worst case, the initialization
takes time cubic inM and each transposition takes time linear inM .



The algorithm’s biggest impediment is the large size of the complex at(∞,∞). To
make it feasible for landmark sets that are not very small, wechoose an upper bound
b for β. Shrinking the parameter domain this way seems appropriatesinceα andβ
play fundamentally different roles. The first parameter,α, controls the resolution of the
reconstruction, allowing small features to form for smallα and letting gross features
take over for largeα. The second parameter,β, controls how tolerantly we interpret
witnesses. The strict interpretation atβ = 0 combined with occasional gaps in the
distribution of witnesses leads to holes caused by sporadically missing simplices. The
findings in [5] suggest that small non-zero values ofβ suffice to repair these holes.
Although our mathematical formulation of tolerance is different from that paper, we
expect the same holds for alpha-beta witness complexes.

Persistence.We now address the question of how to read the Betti numbers ofthe fam-
ily represented by the birthline subdivision. We are not after finding the “best” complex
since we cannot expect that a single complex would contain all interesting patterns in
the data. Since these patterns are expressed at different scale levels a simultaneous rep-
resentation may indeed be impossible. Instead, we are looking for homology classes that
persist whileα andβ vary. Ideally, we would like to define a notion of two-parameter
persistence but there are algebraic difficulties [18]. We therefore fall back on the one-
parameter notion introduced in [10] which measures the length of the interval in a path
along which a homology class persists. Since the scale levelis controlled solely byα
it makes sense to draw the path horizontally in the parameterplane so that persistence
captures scale. In other words, the directed path used in thecomputation of homology
sweeps the parameter plane from bottom to top. More precisely, we gradually increase
β from 0 to b and restrict the path to two turns, one at(β2, β2) and the other at(∞, β2),
with a horizontal line in between. To simulate monotonicity, which is necessary to re-
duce the sweep to transpositions, we advance the horizontalline by processing the si-
multaneous elementary moves from right to left. For each value ofβ we can visualize
the persistence information in a two-dimensional diagram as defined in [19]. Each ho-
mology class is represented by a point whose first coordinatemarks its birth and whose
second coordinate marks its death. Since birth occurs before death this point lies above
the diagonal and its vertical distance from the diagonal is itspersistence.

As proved by Cohen-Steiner et al. [19], small changes in the function cause only
small changes in the diagram. In the case at hand, the function is the value ofα at
which a simplex is added to the witness complex. Asβ increases the value ofα at
which the simplex enters stays the same or decreases. The changes correspond to the
steps in the birthlines and are therefore not continuous. Most of the time the steps are
small but not always. In particular the first step at which a simplex is introduced can be
large. Nevertheless it is useful to stack up the persistencediagrams and to describe the
evolution of a homology class as a possibly discontinuous curve in three-dimensional
space. In a context in which these curves are continuous theyhave been referred to as
vinesforming a collection called avineyard[17]. The vineyard of the family of alpha-
beta complexes enhances the visualization of persistent homology classes by showing
how the persistence changes with varyingβ, the amount of tolerance with which we
recognize a witness of a simplex.



6 Questions and Extensions

We conclude this paper with a list of open questions and suggestions for further research
motivated by our desire to improve the algorithms.

Can we take advantage of the hole repairing quality ofβ without paying the high
price of exploding numbers of simplices? Evidence in support of this possibility is
that an overwhelming majority of changes caused by increasingβ are collapses, which
preserve the homotopy type. This is consistent with our observation that in the limit, for
X = R

d, the homotopy type ofWitness(α, β) is independent ofβ.
Under reasonable assumptions on the distribution of witnesses and landmarks, what

is the expected size of the alpha-beta witness complex as a function ofα andβ? Simi-
larly, what is the expected number of corners per birthline and what is the expected size
of the birthline subdivision?

There are strong parallels between work on witness complexes and on surface and
shape reconstruction. Are there versions of witness complexes analogous to the Wrap
complex [20], which may be viewed as following Forman’s theory of discrete Morse
functions [21]? Similarly, are there relaxations of the alpha-beta witness complexes akin
to the independent complexes studied in [22]?

Data sets are often contained in subspace of Euclidean space. Recent work in this di-
rection proves that every smoothly embedded compact manifold of dimension1 or 2 in
R

d has sufficiently fine samplings of landmarks and witnesses such thatWitness(∞, 0)
is homeomorphic to the manifold [23]. A counterexample to extending this result to
manifolds of dimension3 or higher is described in [24]. The counterexample is based
on slivers, very flat tetrahedra in the Delaunay triangulation, suggesting the use of sliver
exudation methods to remedy the situation [25]. It would be interesting to extend these
results to samplings of submanifolds in which density variations encode important in-
formation about the data.
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