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Abstract

We show that the Delaunay triangulation of a set of points

distributed nearly uniformly on a polyhedron (not neces-

sarily convex) of dimension p in d-dimensional space is

O(n(d−1)/p). For all 2 ≤ p ≤ d − 1, this improves on the

well-known worst-case bound of O(ndd/2e).

1 Introduction

The Delaunay triangulation of a set of points is a data
structure, which in low dimensions has applications
in mesh generation, surface reconstruction, molecular
modeling, geographic information systems, and many
other areas of science and engineering. Like many
spatial partitioning techniques, however, it suffers from
the “curse of dimensionality”: in higher dimensions,
the complexity of the Delaunay triangulation increases
exponentially. Its worst-case complexity is bounded
precisely by the following theorem, known as the Upper
Bound Theorem.

Theorem 1.1. (McMullen [13]) The number of
simplices in the Delaunay triangulation of n points in
dimension d is at most

(

n − bd+1
2 c

n − d

)

+

(

n − bd+2
2 c

n − d

)

= O(nd d
2
e)

This bound is achieved exactly by the vertices of a
cyclic polytope, which all lie on a one-dimensional
curve known as the moment curve. Indeed all of
the examples that we have of point sets which have
Delaunay triangulations of complexity O(ndd/2e) are
distributed on one-dimensional curves. At the opposite
extreme, points distributed uniformly at random inside
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the sphere have Delaunay triangulations of complexity
O(n) in any fixed dimension, with a constant factor
which is exponential in the dimension [9]. Our goal
in this paper is to begin to fill in the picture for
distributions between the two extremes, in which the
points lie on manifolds of dimension 2 ≤ p ≤ d − 1.

As an easy first case, we consider a fixed polyhedral
set (not necessarily convex) P of dimension p in d > p
dimensional space. Our point set S is a sparse ε-sample
from P. Sparse ε-sampling is a model, sometimes used in
computational geometry, in which the sampling can be
neither too dense nor too sparse; we define it precisely
below. Let n be the number of points in S. We consider
how the complexity of the Delaunay triangulation of S
grows, as n → ∞, with P remaining fixed. Our main
result is that the number of simplices of all dimensions
is O(n(d−1)/p). The hidden constant factor depends,
among other things, on the geometry of P, which is
constant since P is fixed.

While our result is purely combinatorial, it has
both potential and immediate algorithmic implications.
The Delaunay triangulation can be computed in opti-
mal worst-case time in dimension d ≥ 3 by the stan-
dard randomized incremental algorithm [8, 16], or de-
terministically [7]. While our result does not immedi-
ately improve these running times for the special case of
points distributed on lower-dimensional manifolds [3], it
is of course a necessary step towards such an improve-
ment. Our result shows that Seidel’s giftwrapping al-
gorithm [15] runs in time O(n2 + n(d−1)/p lg n) in our
special cases, which can be somewhat improved using
more sophisticated data structures [4].

1.1 Prior work. The complexity of the Delaunay tri-
angulation of a set of points on a two-manifold in R

3

has received considerable recent attention, since such
point sets arise in practice, and their Delaunay trian-
gulations are found nearly always to have linear size.
Golin and Na [12] proved that the Delaunay triangula-
tion of a large enough set of points distributed uniformly
at random on the surface of a fixed convex polytope in
R

3 has expected size O(n). They later [11] established



an O(n lg6 n) upper bound with high probability for the
case in which the points are distributed uniformly at
random on the surface of a non-convex polyhedron.

Attali and Boissonnat considered the problem using
a sparse ε-sampling model similar to the one we use here,
rather than a random distribution. For such a set of
points distributed on a polygonal surface P, they showed
that the size of the Delaunay triangulation is O(n) [1].
Our proof gives the same bound, and is perhaps a little
simpler; but, as we shall describe in a moment, our
definition of sparse ε-sampling for polyhedra is a little
more restrictive. In a subsequent paper with Lieutier [2]
they considered “generic” surfaces, and got an upper
bound of O(n lg n). Specifically, a “generic” surface is
one for which each medial ball touches the surface in at
most a constant number of points.

The genericity assumption is important. Erickson
considered more general point distributions, which he
characterized by the spread: the ratio of the largest
inter-point distance to the smallest. The spread of
a sparse ε-sample of n points from a two-dimensional
manifold is O(

√
n). Erickson proved that the Delaunay

triangulation of a set of points in R
3 with spread ∆ is

O(∆3). Perhaps even more interestingly, he showed that
this bound is tight for ∆ =

√
n, by giving an example

of a sparse ε-sample of points from a cylinder that has a
Delaunay triangulation of size Ω(n3/2) [10]. Note that
this surface is not generic and has a degenerate medial
axis.

To the best of our knowledge, there are no prior
results for d > 3.

1.2 Overview of the proof. Our proof uses two
samples, the original sparse ε-sample S from the poly-
hedron P, and a sparse ε-sample M of a bounded subset
M∗ of the medial axis of P. We prove that any Delaunay
ball circumscribing points of S intersects the polyhedron
in a set of points that is contained in an enlarged medial
ball centered at a medial sample point z ∈ M . We then
prove that each sample z in M is assigned at most a
constant number of Delaunay balls.

Since M is a sparse ε-sample from a fixed (d − 1)-
dimensional set of constant volume, its cardinality is
m = O(ε−(d−1)). Similarly, S is a sparse ε-sample
of P and we get n = Ω(ε−p). Eliminating ε gives
m = O(n(d−1)/p), and since each sample of M is charged
for a constant number of Delaunay balls, this bound
applies to the size of the Delaunay triangulation as well.
This is the key insight: as a function of ε, the number
of Delaunay balls depends only on the dimension of
the medial axis, which is always d − 1. The number
of samples, n, depends on the dimension p of P. As
p increases, n increases, but the complexity of the

Delaunay triangulation stays about the same. If written
as a function of n, the complexity of the Delaunay
triangulation goes down.

2 Statement of Theorem

In this section, we introduce the setting for our result.
We first define simplicial complexes, Delaunay triangu-
lations, polyhedra and medial axes.

2.1 Simplicial complexes. We refer to [14] for more
details on simplicial complexes. A geometric simplex, σ,
is the convex hull of a collection of affinely independent
points in R

d. If there are k + 1 points in the collection,
we call σ a k-simplex and k its dimension. Any simplex
spanned by a subset of the k + 1 points is called a
face of σ. A geometric simplicial complex is a finite
collection of simplices, K, satisfying the two following
properties: (1) every face of a simplex in K is in K;
(2) the intersection of any two simplices of K is either
empty or a face of each of them. Its underyling space,
|K|, is the subset of R

d, covered by the simplices with
the subspace topology inherited from R

d. We will also
need abstract versions of those geometric notions. An
abstract simplicial complex, K, is a collection of finite
nonempty sets, such that if σ ∈ K, so is every nonempty
subset of σ. The element σ of K is called an abstract
simplex, its dimension is one less than its cardinality. A
face of σ is any nonempty subset of σ. The vertex set
of σ is the collection one-point elements of σ, which we
denote as Vert σ. The dimension of a simplicial complex
K, geometric or abstract, is the largest dimension of any
simplex in K.

2.2 Delaunay triangulations. Let S ⊆ R
d be a

finite set of points. The Voronoi region V (s), of s ∈ S
is the set of points x ∈ R

d with ‖x − s‖ ≤ ‖x − t‖
for all t ∈ S. The Delaunay triangulation Del(S) of
S is the nerve of the Voronoi regions. Specifically,
an abstract simplex σ = {s0, . . . , sk} ⊆ S belongs
to the Delaunay triangulation iff the Voronoi regions
of its vertices have a nonempty common intersection,
⋂

0≤i≤k V (si) 6= ∅. Equivalently, a simplex σ is in the
Delaunay triangulation iff there exists of a (d − 1)-
sphere, called Delaunay sphere, that passes through
s0, . . . , sk and encloses no point of S. Afterwards,
any d-ball bounded by a Delaunay sphere is referred
to as a Delaunay ball. The Delaunay triangulation is
an abstract simplicial complex. Notice that using this
definition, on degenerate inputs in which k + 1 > d + 2
points are co-spherical, every d + 1 subset of these
points defines a Delaunay simplex, showing that the
Delaunay triangulation is not necessarily a geometric
simplicial complex. In this paper, we don’t assume



general position for points in S. The complexity (or
size) of the Delaunay triangulation is the total number
of its simplices of all dimensions. We express it as a
function of n, the number of points in S.

2.3 Polyhedron. A polyhedron is the underlying
space of a geometric simplicial complex. If the di-
mension of the simplicial complex K is p, we say that
P = |K| is a p-polyhedron. The collection of simplices
σ ∈ K, whose dimension is i or less is called the i-
skeleton of K and denoted K(i). Given a point x ∈ P,
we let i be the largest dimension for which a small open
d-ball centered at x intersects |K(i)| in an open i-ball
N(x) of |Ki| (see Figure 1). The tangent flat to P at
x, denoted by TPx, is the i-flat spanned by the open
i-ball N(x). A face F of P is a maximal collection of
points with identical tangent flat. If the dimension of
the tangent flat is i, F is an i-face. The 0-faces are called
vertices. Afterwards, f designates the number of faces
of P. We assume the dimension p of P is less than d.

TPx

x

P

Figure 1: The tangent flat to P at x is a line. Note that a
polyhedron may have smaller-dimensional parts. Points
that sample lower-dimensional parts can have a high-
complexity Delaunay triangulation but still not damage
the overall complexity, because they form a small subset
of the set of sample points.

2.4 Medial axis. The medial axis is instrumental in
expressing the constant in our main result and crucial
for proving it. The medial axis, M = M(P), is the
set of points that have at least two closest points in P.
Formally, writing Π(z) for the set of points in P with
minimum distance to z ∈ R

d, we have

M = {z ∈ R
d | cardΠ(z) ≥ 2}.

A point z on the medial axis is said to be medial. The
smallest d-ball centered at z and containing Π(z) is

called a medial ball. The medial axis of a polyhedron
P admits a stratification. In other words, it can
be decomposed into a finite number of strata, each
a connected i-manifold with boundary, for i < d.
Furthermore, any point x ∈ M belongs to the closure
of at least one stratum of dimension d − 1. Roughly
speaking, the medial axis of a polyhedron is a (d −
1)-dimensional surface that has a positive (d − 1)-
dimensional volume, possibly infinite.

L(z)c(z) z

Figure 2: The essential medial axis is solid and includes
the black dots. The non-essential part is dotted. The
point z is essential. Observe that the circle around z is
tangent to one edge incident to a gray point.

We introduce a bounded subset of the medial axis,
M∗ = M∗(P), called the essential medial axis and
defined as follows. For z ∈ M, we let c(z) be the
center of the smallest d-ball enclosing Π(z). A point
z for which z = c(z) is called a critical point of the
distance-to-polyhedron function [6, 5]. One can prove
that z = c(z) iff z lies in the convex hull of Π(z).
It follows that if z lies outside the convex hull of the
polyhedron, then z 6= c(z) and the line passing through
c(z) and z is well defined. We denote by L(z) the
half-line that starts at c(z) and passes through z. We
are now ready to define what it means for a point z
to be essential. We consider two cases: if z belongs
to the convex hull of P, then z is essential; otherwise,
z is essential iff the half-line L(z) minus the segment
connecting z and c(z) is contained in the medial axis and
z is the center of the smallest medial ball enclosing Π(z)
and centered on L(z) (see Figure 2). An essential medial
ball is a d-ball whose center is essential. The essential
medial axis is defined as the set of essential medial points
and, by construction, is bounded. Unlike the medial
axis, it has a finite (d − 1)-dimensional volume, which
vanishes iff the polyhedron lies on an hyperplane of R

d.



2.5 Sampling condition. We write B(x, r) for the
closed d-ball with center x and radius r. Given a
polyhedron P ⊆ R

d, we say that a set of points S ⊆ P is
a λ-sparse ε-sample of P iff it satisfies the following two
conditions:

Density: for every point x on a face F of P, B(x, ε)∩F
contains at least one point of S;

Sparsity: for every point y ∈ R
d, B(y, dε) contains at

most λ points of S.

The number of samples on each i-face is Θ(ε−i). Writing
p for the dimension of P, the number of points in the
sample is n = Θ(ε−p).

To state our main result, we let vi be the i-
dimensional volume of a unit i-ball. The i-dimensional
volume of a i-ball of radius r is vir

i. Furthermore,
writing voli(X) for the i-dimensional volume of X ⊆
R

d, we assume that there exist two positive constants
wP > 0 and r0 > 0 such that for every 0 < r ≤ r0, for
every point x ∈ M∗

wP ≤ vold−1(B(x, r) ∩M)

rd−1
.(2.1)

To provide an intuition for the constant wP, suppose
x is a point on a smooth hypersurface M embedded
in R

d. In first approximation, the intersection of a d-
ball B(x, r) and the hypersurface has the volume of a
(d− 1)-ball with radius r, showing that the ratio on the
right side of Inequality (2.1) tends to vd−1 as r tends to
0. In our case, x does not live on an hypersurface but
on the medial axis which is a set of patches of smooth
hypersurfaces. If x lies inside a patch, the ratio tends to
vd−1. Inequality (2.1) takes into account the fact that if
x lies on the boundary of some patches, the ratio tends
to something which depends on the local geometry of
the incident patches. Finally, we introduce the constant

C(P) = 22d−1 vold−1(M∗(P))

volp(P)
d−1

p

× (2vp)
d−1

p

wP

.

Theorem 2.1. (Main theorem) Let P be a p-
polyhedron in R

d composed of f faces not all contained
in an hyperplane. Let S be a set of n points that forms
a λ-sparse ε-sample of P. The Delaunay triangulation

of S has complexity O(n
d−1

p ). More precisely, for n
large enough, the number of Delaunay k-simplices is
bounded from above by

C(P)

(

λf

k + 1

)

n
d−1

p +

(

f

k + 1

)

n.

Our proof assumes that neither the p-dimensional
volume of the polyhedron nor the (d − 1)-dimensional
volume of the essential medial axis vanishes, which
ensures that 0 < C(P) < ∞.

3 Covering Delaunay balls

In this section, we establish preliminary results that
bound the intersection of a Delaunay ball and the poly-
hedron. For this, we use a shape obtained by enlarging
either a medial ball or a point on the polyhedron. Those
results will be used in Section 4 to prove our bound on
the complexity of Delaunay triangulations.

3.1 Almost empty balls. We first give a crucial
property of Delaunay balls induced by our sampling
condition. For this, we need notations and definitions.
Recall that B(z, r) is the closed d-ball with center z and
radius r. We define the penetration h(b) of b = B(z, r) as
the difference of square radii between b and the largest
d-ball centered at z and whose interior does not intersect
P

h(b) = r2 − d(z, P)2.

Note that b intersects the polyhedron iff h(b) ≥ 0. A
ball b for which h(b) ≤ 0 is said to be empty. Calling
a ball b for which h(b) ≤ ε2 an ε-almost empty ball, we
have the fundamental property:

Fundamental property. Delaunay balls are ε-
almost empty.

Proof. Let x be a point in P with minimum distance
to the center of b and s ∈ S be the closest sample on
the i-face that contains x. Because of our sampling
condition, ‖x − s‖ ≤ ε. Because b contains no sample
point in its interior, b intersects TPx in an i-ball of
radius

√

h(b) ≤ ‖x − s‖. It follows that h(b) ≤ ε2.

3.2 Contact. We now introduce the notion of ε-
contact of a ball ν and use it to cover the intersection
of ε-almost empty balls with the polyhedron. Given
a d-ball ν with center z and radius r, we let ν⊕a =
B(z,

√
r2 + a2) be the d-ball with center z and radius√

r2 + a2. Recalling that Π(z) is the set of points in P

with minimum distance to z, we define the ε-contact of
ν as

Contact(ν, ε) =
(

ν⊕ε ∩ P
)

∪
⋃

x∈Π(z)

B(x, ε).

Suppose b is an ε-almost empty ball. We show in the
next lemma that there exists an empty ball ν whose ε-
contact contains b ∩ P. In addition, this empty ball is
either medial or a point of P. To distinguish between
the two cases, we classify balls as ordinary or trivial.
Any medial ball is said to be ordinary. If a ball b is not
medial, its center y has a unique closest point x ∈ P.



If x = y, or equivalently if the ball b is centered on
the polyhedron, b is said to be trivial. Suppose now
that x 6= y. The half-line L = L(y) begining at x and
passing through the center y of b either intersects the
medial axis in a point z, or extends to infinity (when y
and P lie on both sides of the hyperplane that passes
though x and is orthogonal to the straight-line xy). In
the first case we say that b is ordinary, and in the second
we say that b is trivial. Notice that when b is ordinary,
y lies in the interior of segment xz (since x is the closest
point on P to y).

Lemma 3.1. Suppose b is an ε-almost empty ball.

(i) If b is trivial, then there exists a point x ∈ P such
that b ∩ P ⊆ B(x, ε).

(ii) If b is ordinary, then there exists a medial ball ν
such that b ∩ P ⊆ Contact(ν, ε).

Proof. Without loss of generality, we can assume that b
intersects the polyhedron and h(b) ≥ 0. If this is not the
case, we replace b by the largest empty ball with same
center. If b is medial, the result follows immediately by
setting ν = b. If the center y of b lies on P, the result
also follows immediately by observing that b ⊆ B(y, ε).
Suppose now that b is not medial and its center y has
a unique closest point x 6= y on P (see Figure 3).
Consider the half-line, L = L(y), with origin x and

r

H x

y

z

P

bx

ν

bz

L

b = by

τ

Figure 3: Notations for the proof of Lemma 3.1. Dotted
spheres are tangent to P. Solid spheres penetrate P

from r and belong to the same pencil of spheres passing
through the boundary of τ .

passing through y. The half-line L either intersects the
medial axis or extends at infinity. In both cases, we let
z ∈ M be the point on L (possibly at infinity) closest
to y. Because b is ε-almost empty and contains x, the

hyperplane H that passes through x and is orthogonal
to the straight-line xy intersects b in a (d−1)-ball τ with
center x and radius 0 ≤ r ≤ ε. Consider the pencil of
(d−1)-spheres that pass through the boundary of τ and
let bu be the d-ball bounded by a sphere in this pencil
with center u ∈ L. Because the interval defined by x and
z contains y, we have b = by ⊆ bx ∪ bz. First, assume
that z belongs to the medial axis (i.e. b is ordinary)
and let ν be the medial ball centered at z. This medial
ball passes through x, and therefore bz = ν⊕r ⊆ ν⊕ε.
Observing that x ∈ Π(z), it follows that

b ∩ P ⊆ (bx ∪ bz) ∩ P

⊆
(

B(x, ε) ∪ ν⊕ε
)

∩ P

⊆ Contact(ν, ε).

Second, assume that z is at infinity (i.e. b is trivial).
The ball bz is the one half-space that H bounds and
which contains y. Its interior does not intersect P and
it follows that

b ∩ P ⊆ bx = B(x, r) ⊆ B(x, ε).

We strenghten the second part of Lemma 3.1 by
showing that the medial ball ν whose ε-contact contains
b ∩ P can be chosen essential.

Lemma 3.2. For every non-essential medial ball µ,
there exists an essential medial ball ν such that

Contact(µ, ε) ⊆ Contact(ν, ε)

Proof. See Figure 4; let y be the center of µ. Let
c = c(y) be the center of the smallest ball enclosing
Π(y), the set of points in P with minimum distance to
y. Because y is not essential, it does not lie in the convex
hull of P and y 6= c. Consider H , the hyperplane passing
through c and orthogonal to the vector c−y. P and y lie
on opposite sides of the hyperplane H . Let ω and ω′ be
the two closed half-spaces that H bounds and assume
that y ∈ w and P ∈ w′. The (d − 1)-spheres bounding
µ and w generate a pencil of spheres, whose centers
lie on the straight-line passing through c and y. They
intersect the hyperplane H in a common (d− 1)-ball τ ,
whose boundary contains Π(y). Consider the smallest
medial sphere in the pencil and let ν be the ball that this
sphere bounds. The center z of ν lies on the segment
cy. Note that Π(y) ⊆ Π(z) and points in Π(z)−Π(y) lie
in the smallest ball centered at c and passing through
Π(y). It follows that the smallest ball enclosing Π(z) is
also centered at c = c(z). Therefore, ν is an essential
medial ball. Now, observe that µ⊕ε belongs to the pencil



ν

µ

τH

w′

wc

z

y

P

Figure 4: Notations for the proof of Lemma 3.2. The
point z is essential and the point y is not. Inner spheres
of gray annuli are medial. Outer spheres penetrate P

from ε.

of spheres generated by ν⊕ε and w. Since the center y
of the former lie on the half-line defined by the centers
of the latters, we have µ⊕ε ⊆ ν⊕ε ∪ ω. It follows that

µ⊕ε ∩ P ⊆ ν⊕ε ∩ P,

and because Π(y) ⊆ Π(z), the ε-contacts of µ and ν are
nested as claimed.

3.3 Extended contact. It will be convenient to
bound the intersection of Delaunay balls and the poly-
hedron, using a slightly different notion of ε-contact.
Given z ∈ R

d, we let χ(z) be the set of orthogonal pro-
jections of z onto the tangent planes of P. The set χ(z)
contains at most f points, one for each face of the poly-
hedron. We define the extended ε-contact of the d-ball
ν with center z as

ExtendedContact(ν, ε) =
⋃

x∈χ(z)

B(x, ε).

For any two medial balls whose centers are less than ε
apart, we show that the ε-contact of one is contained
in the extended (dε)-contact of the other. This result
will be used in the next section to reduce the amount of
essential medial balls necessary to cover intersections of
Delaunay balls with the polyhedron.

Lemma 3.3. For any two medial balls µ and ν whose
centers y and z satisfy ‖y − z‖ ≤ ε,

Contact(µ, ε) ⊆ ExtendedContact(ν, dε).

Proof. Let x ∈ Contact(µ, ε). First, suppose that
x ∈ B(q, ε) for some q ∈ Π(y). Writing πq(z) for
the orthogonal projection of z onto the tangent plane
passing through q ∈ P and using πq(y) = q, we get

‖x − πq(z)‖ ≤ ‖x − q‖ + ‖πq(y) − πq(z)‖
≤ ε + ‖y − z‖
≤ 2ε,

and x ∈ ExtendedContact(ν, 2ε). Suppose now that x ∈
µ⊕ε and consider the annulus α = µ⊕ε−µ. We construct
a sequence of points in P ∩ α starting from x such that
the last point q in the sequence satisfies πq(y) ∈ α and
any two consecutive points in the sequence are less than
ε apart. Starting from x, we distinguish two cases:

1. if πx(y) ∈ α, we are done: the sequence ends at x.

2. if πx(y) 6∈ α, we consider the point q ∈ P on the
segment xπx(y), which is closest to x and does not
have the same tangent flat as x. The dimension of
TPq is strictly less than the dimension of TPx and
‖x − q‖ ≤ ε, since the segment xq is contained in
α. We now iterate, using q instead of x.

After a finite number of steps, we find a point
q ∈ P such that πq(y) ∈ α. If q is a vertex of the
polyhedron, q = πq(y) and at most d − 1 steps were
necessary, showing that ‖x − q‖ ≤ (d − 1)ε. If q is
not a vertex, ‖q − πq(y)‖ ≤ ε and at most d − 2 steps
were necessary, showing that ‖x − q‖ ≤ (d − 2)ε. In all
cases, ‖x − πq(y)‖ ≤ (d − 1)ε and applying triangular
inequality, we get

‖x − πq(z)‖ ≤ ‖x − πq(y)‖ + ‖πq(y) − πq(z)‖
≤ (d − 1)ε + ‖y − z‖
≤ dε,

and x ∈ ExtendedContact(ν, dε) as claimed.

4 Bounding the number of simplices

In this section, we bound the number of Delaunay
k-simplices induced by λ-sparse ε-samples S of the
polyhedron P. A key step in our proof is to introduce a
sample of the essential medial axis M ⊆ M∗ consisting

of m = O(n
d−1

p ) points.



4.1 Sampling the medial axis. An ε-sample of the
essential medial axis is a subset M ⊆ M∗ such that
every point x ∈ M∗ has a point z ∈ M at distance
no more than ε, ‖x − z‖ ≤ ε. To construct such a
sample, we consider a maximal collection of m non-
overlapping d-balls bi = B(zi,

ε
2 ) whose centers zi lie

on the essential medial axis M∗. Because the collection
is maximal, no ball with center z ∈ M∗ and radius ε

2
can be added to the collection without overlapping

⋃

bi.
This implies that the set of centers zi is an ε-sample of
the essential medial axis, which we denote by M . On
the other hand, the patches γi = B(zi,

ε
2 ) ∩ M pack

the enlarged essential medial axis M∗
ε/2 = {x ∈ M |

d(x,M∗) ≤ ε/2} and

m min
i

vold−1(γi) ≤ vold−1(M∗
ε/2).

As ε tends to 0, the ratio between the two (d − 1)-
dimensional volume of M∗ and M∗

ε/2 tends to 1 and

for ε small enough, vold−1(M∗
ε/2) ≤ 2 vold−1(M∗).

Applying Inequality (2.1) yields to an upper bound on
the number of points m in M :

m ≤ 2d vold−1(M∗)

wP

ε−(d−1)

In short, m = O(ε−(d−1)). We now establish that size
of S is at least some constant times the p-th power of
one over ε, n = Ω(ε−p).

Lemma 4.1. Let S be a λ-sparse ε-sample of a p-
polyhedron P. For ε small enough, the number of points
n in S satisfies

2−(p+1) volp(P)

vp
ε−p ≤ n

Proof. Let F be a face of P that spans a k-flat H .
Let δ be the unit k-ball centered at the origin of R

d

and parallel to H . Consider a maximal collection of l
non-overlapping k-balls δi = B(xi, ε) ∩ H contained in
F . Each ball δi contains at least a sample point of S.
Thus, l ≤ card (S ∩ F ). On the other hand, the k-balls
B(xi, 2ε) ∩ H cover

F − εδ = {x ∈ F | B(x, ε) ∩ H ⊆ F}.

Translating this in terms of k-dimensional volume,
we get volk(F − εδ) ≤ l vk(2ε)k. Eliminating l and
summing over all faces F of P, we get

∑

F

volk(F − εδ)

vk2k
ε−k ≤ n.

The claim follows for ε small enough.

We combine our upper bound on the number of
points m in M and our lower bound on the number
of sample points n and get the following lemma:

Lemma 4.2. For ε small enough, there exists an ε-
sample M of the essential medial axis with m ≤
C(P) n

d−1

p points.

4.2 Proof of the Main Theorem. We now give the
proof of our main theorem. We consider the sparse ε-
sample M of the medial axis with m points defined in
the previous section. For k ≥ 1, we map each Delaunay
k-simplex σ to a point z ∈ S ∪ M and use z to locate
the vertices of σ. To explain this, let b be one of the
Delaunay ball that circumscribes σ. The vertices of σ
are located on the boundary of b. By the fundamental
property of Delaunay balls, b has the property to be
ε-almost empty. We apply Lemma 3.1:

1. If b is trivial, by (i) of Lemma 3.1, there exists a
point x ∈ P such that b ∩ P ⊆ B(x, ε). Because S
is an ε-sample of P, there exists a point z ∈ S with
‖x − z‖ ≤ ε and

Vert σ ⊆ B(z, 2ε).

2. If b is ordinary, we apply (ii) of Lemma 3.1,
combined with Lemma 3.2 and Lemma 3.3 to find
that there exists a point z ∈ M such that its
associated medial ball ν satisfies

Vert σ ⊆ ExtendedContact(ν, dε).

To summarize, any simplex in the Delaunay triangula-
tion has its vertices contained either in a ball B(z, 2ε)
with z ∈ S or in the extended (dε)-contact of a medial
ball whose center belongs to M . Because S is λ-sparse,
B(z, 2ε) contains at most λ sample points. The num-
ber of k-simplices σ that we can form by picking k + 1
vertices among those λ points is

(

λ
k+1

)

. The extended
(dε)-contact is the union of at most f balls of radius dε
and therefore contains at most λf points. The number
of k-simplices σ that we can form by picking k + 1 ver-
tices among those fλ points is

(

fλ
k+1

)

. Therefore, the
number of Delaunay k-simplices is bounded by

(

λ

k + 1

)

n +

(

fλ

k + 1

)

m,

which concludes the proof of our main theorem.

5 Conclusion

In this paper, we proved that a size n sparse sample of
a fixed p-polyhedron in R

d for p < d has a Delaunay



triangulation with size O(n(d−1)/p) as n goes to infinity.
In particular, this gives a linear bound for a (d − 1)-
dimensional polyhedron in R

d. This result is, to our
knowledge, the first result of this kind for dimension
greater than three. We see several directions in which
this result could be improved.

The sparse ε-sample definition we use here is more
restrictive than the definition in previous papers for
the three dimensional case, in that we require all faces
of all dimensions to be densely sampled and not only
faces with highest dimension. If we sample only p-
dimensional faces of the polyhedron, a first observation
is that a Delaunay ball with radius r is no longer
ε-almost empty but only

√
2rε-almost empty. We

conjecture, however, that the O(n(d−1)/p) bound is still
achievable in this setting.

Similar results in the random sampling model or
when noise is added to the sample points should be
attainable.

Another question of interest would be to bound
the size of the Delaunay triangulation of sets of points
sampled on or near smooth manifolds of dimension
2 ≤ p ≤ d − 1. Our results, and the prior work in
dimension three, suggest that it may be possible to
improve on the worst case bounds.
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