David COEURJOLLY, Annick MONTANVERT et Jean-Marc CHASSERY

Traité IC2 - Hermès

Table des matières

Notations	15
Préface	
Introduction générale	et Jean-Marc CHASSERY
Chapitre 1. Eléments de base	23 et Jean-Marc CHASSERY
 1.1. Image, image numérique et support 1 1.2. Espace discret et connexité	l'image 23

1.6.1. Représentation par projections et tomographie discrète	48
1.6.2. Axe médian et représentation de formes par union de boules	49
1.6.3. Représentation exacte linéaire par morceaux	49
1.7. Analyse d'objets discrets	50
1.7.1. Attributs de bord	51
1.7.2. Analyse de régions	52
1.8. Segmentation d'images et géométrie discrète	52
1.8.1. Approche frontière	52
1.8.2. Approche région	53
1.9. Structure de l'ouvrage	54
1.10. Bibliographie	55
PREMIÈRE PARTIE. FONDEMENTS	57
	50
Chapitre 2. Outlis Arithmetiques pour la Geometrie Discrete	59
Gaelle LARGETEAU-SKAPIN et Isabelle DEBLED-RENNESSON	
2.1. Introduction	59
2.2. Structure de \mathbb{Z}	59
2.3. Notion de divisibilité dans \mathbb{Z}	61
2.3.1. Définition	61
2.3.2. Nombres premiers	62
2.3.3. PGCD et PPCM	63
2.3.4. Algorithme de calcul du PGCD	64
2.4. Équation diophantienne	65
2.4.1. Définition et exemples	65
2.4.2. Méthodes de résolutions	66
2.4.3. Lien avec la géométrie discrète	67
2.5. Partie entière	67
2.5.1. Définitions	67
2.5.2. Propriétés et calcul avec des parties entières	68
2.5.3. Introduction aux applications quasi-affines	69
2.6. Arbre de STERN-BROCOT et suites de FAREY	69
2.6.1. Définitions et premières propriétés	69
2.6.2. Arbre de STERN-BROCOT et fractions continues	71
2.6.3. Réseaux entiers	71
2.7. Conclusion	73
2.8. Bibliographie	74
Chapitre 3. Topologie, courbes et surfaces discrètes	75
Jacques-Olivier LACHAUD et Rémy MALGOUYRES	
3.1. Introduction	75
3.2. Propriétés topologiques des chemins fermés dans \mathbb{Z}^2	76
3.3. Courbes comme ensembles de pixels	79

Table des matières 5

3.4. Points simples et homotopie	80
3.5. Groupe fondamental $2D$ et trous	83
3.6. Points simples et groupe fondamental	86
3.6.1. Cas 2D	86
3.6.2. Cas 3 <i>D</i>	87
3.7. Courbes et surfaces comme arcs d'un graphe d'adjacence de \mathbb{Z}^d	89
3.7.1. Espace discret, surface, intérieur et extérieur	89
3.7.2. Surfaces de JORDAN	91
3.7.3. Connexité intérieur et extérieur, surface $\kappa\lambda$ -JORDAN	92
3.7.4. Image binaire, $\kappa\lambda$ -bord, paire de JORDAN	93
3.7.5. Adjacences entre surfels le long d'un bord ; suivi de surface	94
3.7.6. Quelques considérations de mise en œuvre	98
3.8. Conclusion	99
3.9. Annexe : démonstrations techniques	99
3.10. Bibliographie	100
Chapitre 4. Cartes combinatoires pour l'analyse d'images	103
Guillaume DAMIAND et Luc BRUN	
4.1. Introduction	103
4.2. Présentation des cartes combinatoires	104
4.3. Cartes pour l'analyse d'images 2D	108
4.3.1. Codage de la topologie et de la géométrie d'une image	108
4.3.2. Construction du modèle à partir d'une image	110
4.3.2.1. Algorithme naïf	110
4.3.2.2. Algorithme incrémental	111
4.3.3. Édition d'une partition	115
4.4. Cartes pour l'analyse d'images 3D	116
4.4.1. Codage de la topologie et de la géométrie d'une image	116
4.4.2. Construction du modèle à partir d'une image	117
4.4.3. Édition d'une partition	118
4.5. Conclusion	118
4.6. Bibliographie	118
	101
DEUXIEME PARTIE, ELEMENTS GEOMETRIQUES ET TOPOLOGIQUES	121
Chanitra 5 Distanças discràtas	123
Edouard THIEL et David COEURIOLLY	125
	100
5.1. Introduction	123
5.2. Axiomes de distance et norme discrètes	124
5.2.1. Distances	124
5.2.2. Normes sur un module (espace vectoriel discret)	126
5.2.3. Boules et convexite	128
5.3. Distances et normes de chantrein	129

5.3.1. Masque, chemin et distance de chanfrein	129
5.3.2. Exemples et origines des masques de chanfrein	131
5.3.3. Normes de chanfrein et formules directes	132
5.3.4. Construction de normes et optimisation	134
5.4. Transformations de distances	135
5.4.1. Distances de chanfrein	135
5.4.2. Distance euclidienne	136
5.5. Distances géodésiques	140
5.5.1. Visibilité dans un domaine discret et distances géodésiques	140
5.5.2. Transformation en distance géodésique basée sur une distance	
de chanfrein	141
5.5.3. Transformation en distance géodésique basée sur une visibilité	
discrète	142
5.5.4. Transformation en distance géodésique en dimension supérieure	142
5.5.5. Quelques exemples	142
5.6. Conclusion	144
5.7. Bibliographie	144
Chapitre 6. Droites et plans discrets	147
Isabelle SIVIGNON et Isabelle DEBLED-RENNESSON	
6.1. Introduction	147
6.2. Droites discrètes 2D	148
6.2.1. Définitions et propriétés	148
6.2.1.1. Historique des premières définitions	148
6.2.1.2. Définition arithmétique	148
6.2.2. Algorithmes de reconnaissance	151
6.2.2.1. Algorithme arithmétique	152
6.2.2.2. Utilisation de l'espace dual	153
6.3. Plans discrets	155
6.3.1. Quelques définitions structurelles	156
6.3.2. Définition arithmétique et premières propriétés	157
6.3.2.1. Etude de la topologie d'un plan discret	157
6.3.2.2. Plans discrets et réseaux	159
6.3.2.3. Plans et discrétisations	160
6.3.2.4. Propriété combinatoire	160
6.4. Interactions entre objets élémentaires	161
6.4.1. Intersection de droites discrètes 2D	161
6.4.1.1. Connexité	161
6.4.1.2. Enumération	162
6.4.1.3. Paramètres minimaux	162
6.4.2. Intersection de plans discrets	163
6.4.3. Segments de droites : parallélisme, colinéarité	165
6.5. Conclusion	166

6.6. Bibliographie	• • • •	166
Chapitre 7. Transformations affines discrètes	••••	169
7.1. Introduction		169
7.2. Définition et exemples		169
7.2.1. Définition d'une AQA		169
7.3. Exemples d'applications quasi-affines		170
7.3.1. Evaluation d'une transformation discrète		170
7.3.2. Translation discrète		171
7.3.2.1. Définir une translation discrète pour un point isolé .		171
7.3.2.2. Translation discrète d'objets complexes		171
7.3.3. Homothétie discrète		173
7.3.4. Rotation pythagoricienne		173
7.3.5. Rotation quasi-transvection		176
7.3.6. Etude des applications quasi-affines		178
7.3.7. Liens avec les droites discrètes		178
7.3.8. Dynamique d'une AQA contractante		178
7.3.9. Pavages		180
7.3.9.1. Cas réduit		181
7.3.9.2. Cas général		182
7.4. Transformations d'images par une AQA		184
7.5. Bibliographie		186
Chapitre 8. Transformations topologiques discrètes	••••	187
8.1. Introduction		187
8.2. Transformations topologiques binaires		187
8.2.1. Nombres de connexité		187
8.2.2. Classification topologique des points d'un objet		189
8.2.3. Amincissements et épaississements homotopiques		190
8.2.4. Amincissements en largeur		190
8.2.5. Squelettes curvilignes et surfaciques		192
8.2.6. Transformations guidées par une fonction de priorité		194
8.2.7. Fermeture de trous		197
8.3. Transformations topologiques en niveaux de gris		199
8.3.1. Topologie des coupes		200
8.3.2. Caractérisations locales et classification topologique des	points	201
8.3.3. Filtrage topologique		202
8.3.4. Segmentation topologique		204
8.3.5. Restauration de crêtes		205
8.4. Conclusion		207
8.5. Bibliographie		208

TROISIÈME PARTIE. CHANGEMENTS DE REPRÉSENTATION	211
Chapitre 9. Représentation par Axe Médian Dominique ATTALI, David COEURJOLLY et Eric REMY	213
 9.1. Introduction	213 214 214 215 216 216 216 216 218 219 220 221 223 225 225 225 225 228 229 230 231
Chapitre 10. Transformation et reconstruction par projections Alain DAURAT et Nicolas NORMAND	235
10.1. Introduction 10.2. Transformation Mojette 10.2.1. Reconstruction 10.2.2. Validité de l'algorithme 10.3. Reconstruction des convexes 10.3.1. Unicité 10.3.2. Algorithmes de reconstruction 10.3.2.1. Reconstruction des convexes directionnels 10.3.2.2. Reconstruction des convexes directionnels 10.3.2.3. Beconstruction des convexes directionnels 10.3.2.4. Reconstruction des convexes directionnels 10.3.2.5. Bibliographie	235 236 239 240 240 241 242 244 244 246 247
Chapitre 11. Polygonalisation et polyédrisation réversibles Isabelle SIVIGNON	249
 11.1. Introduction	249 250 250

Table des matières 9

11.2.2. Surfaces discrètes	252
11.3. Reconstruction : problèmes de l'approche naïve	253
11.4. Polygonalisation d'une courbe 2D	253
11.4.1. Courbe à sommets entiers et respect de la convexité	253
11.4.2. Courbe polygonale quelconque	255
11.5. Polygonalisation de courbes 3D quelconques et planaires	258
11.6. Polyédrisation de surfaces	261
11.7. Conclusion	263
11.8. Bibliographie	263
Chapitre 12. Approximation par triangulation	265
Jacques-Olivier LACHAUD et Sébastien VALETTE	
12.1. Introduction	265
12.2. Extraction de surfaces triangulées à partir de volumes de données	266
12.2.1. Isosurfaces et algorithme Marching Cubes	267
12.2.2. Triangulations de surfaces discrètes	269
12.2.2.1. Dualité surface discrète et isosurface triangulée	271
12.2.2.2. Polyédrisation de surface discrète par amincissement ho-	- / -
motopique	271
12.3. Approximation de maillages	274
12.3.1. Approximations successives	274
12.3.2. Approximation directe, approches variationnelles	275
12.4. Conclusion	281
12.5. Bibliographie	281
QUATRIÈME PARTIE. ATTRIBUTS ET ANALYSE DISCRÈTE	283
Chapitre 13. Attributs de bord	285
13.1 Introduction	285
13.2 Estimateurs de longueur	285
13.2.1 Polygonalisation du hord	286
13.2.2. Intégration des normales	287
13.2.2. Comparaison	288
13.2.4 Extension en 3D	289
13.3 Estimateurs de tangente	289
13.3.1 Calcul sur un voisinage de taille fixe	289
13.3.2. Calcul sur un voisinage adaptatif	200
13.3.2. Comparaison	292
13.4 Estimateurs de courbure	292
13.4.1 Définition	293
13.4.2 Approches analytiques	294
13.4.2.1 Approximation des dérivées	294
	274

13422 Estimation par filtrage	295
13.4.2.3. Estimation par demi-tangentes	295
13.4.3. Approches géométriques	296
13.4.3.1. Cercle osculateur	296
13.5. Conclusion	297
13.6. Bibliographie	298
Chapitre 14. Descripteurs de forme et moments géométriques	301
David COEURJOLLY et Annick MONTANVERT	
14.1. Introduction	301
14.2. Moments géométriques pour la caractérisation de formes	303
14.2.1. Définition classique	303
14.2.2. Invariance des moments géométriques	303
14.2.3. Moments géométriques d'objets discrets et convergence des	
mesures	306
14.3. Méthodes de calcul des moments	307
14.3.1. Approche directe	307
14.3.2. Approche par <i>run-length</i>	307
14.3.3. Approche contour : théorème discret de divergence	308
14.4. Quelques descripteurs de formes	311
14.4.1. Moments de LEGENDRE et de ZERNIKE	311
14.4.2. Approches par transformées	313
14.5. Conclusion	314
14.6. Bibliographie	314
CINQUIEME PARTIE. MISE EN ŒUVRE ET OUVERTURES	317
Chanitre 15 Codage nar primitives issues de l'ave médian pour une trans-	
mission progressive	319
Florent DUPONT	01)
15.1 Introduction	210
15.1. Introduction programsive à partir de l'ave médien	220
15.2. Transmission progressive à partir de l'axe median	320
15.2.1. Organisation des données	221
15.2.2. Choix de la distance	221
15.2.5. Necessite d'une mesure de ressemblance	221
15.2.4. Algorithme de ut et selection des primitives	321
15.2.5. Principe de codage	322
15.3. Fininitives fiones de contes	323
15.5.1. Enveloppes convexes de deux boules	323 224
15.3.2. Algorithme de l'algorithme de codage	324
15.5.5. Auaptation de l'algorithme de couage	324
15.4. Extension aux enveloppes de nois ou quane boules	323 325
1.5.7.1. 1 1111111111053	$J\Delta J$

15.4.2. Combinatoire liée au choix des primitives	326
15.4.3. Adaptation de l'algorithme de codage	327
15.5. Résultats en transmission progressive	327
15.6. Conclusion	328
15.7. Bibliographie	328
Chapitre 16. Applications de la transformation Mojette	331
16.1 Introduction	331
16.2 Stockage et transmission d'information	332
16.2.1 Introduction	332
16.2.2.1. Indeduction figure 16.2.2.1. Indeduction figure 16.2.2.1.	333
16.2.3. Protection inégale	334
16.3 Tatouage et secret partagé	335
16.3.1. Utilisation de la redondance pour l'authentification	336
16.3.2. Du secret partagé	337
16.4. Tomographie	338
16.4.1. Introduction	338
16.4.2. Rétroprojection filtrée Mojette	338
16.5. Conclusion	340
16.6. Bibliographie	340
8	
Chapitre 17. Les sections planes des voxels	343
Chapitre 17. Les sections planes des voxels	343 343
Chapitre 17. Les sections planes des voxels Jean-Pierre REVEILLÈS 17.1. Introduction 17.2. Bases du \mathbb{Z} -module $ax + by + cz = 0$	343 343 344
Chapitre 17. Les sections planes des voxels Jean-Pierre REVEILLÈS 17.1. Introduction 17.2. Bases du \mathbb{Z} -module $ax + by + cz = 0$ 17.3. Symétries du cube	343343344345
Chapitre 17. Les sections planes des voxels Jean-Pierre REVEILLÈS 17.1. Introduction 17.2. Bases du \mathbb{Z} -module $ax + by + cz = 0$ 17.3. Symétries du cube 17.3.1. Le groupe octaédral.	 343 343 344 345 345
Chapitre 17. Les sections planes des voxels Jean-Pierre REVEILLÈS 17.1. Introduction 17.2. Bases du \mathbb{Z} -module $ax + by + cz = 0$ 17.3. Symétries du cube 17.3.1. Le groupe octaédral. 17.3.2. Algorithme de réduction au domaine fondamental.	 343 343 344 345 345 346
Chapitre 17. Les sections planes des voxels Jean-Pierre REVEILLÈS 17.1. Introduction 17.2. Bases du \mathbb{Z} -module $ax + by + cz = 0$ 17.3. Symétries du cube 17.3.1. Le groupe octaédral. 17.3.2. Algorithme de réduction au domaine fondamental. 17.4. Sections planes d'un cube	 343 343 344 345 345 346 347
Chapitre 17. Les sections planes des voxelsJean-Pierre REVEILLÈS17.1. Introduction17.2. Bases du \mathbb{Z} -module $ax + by + cz = 0$ 17.3. Symétries du cube17.3.1. Le groupe octaédral.17.3.2. Algorithme de réduction au domaine fondamental.17.4. Sections planes d'un cube17.4.1. Les sections planes principales	 343 343 344 345 345 346 347 347
Chapitre 17. Les sections planes des voxelsJean-Pierre REVEILLÈS17.1. Introduction17.2. Bases du \mathbb{Z} -module $ax + by + cz = 0$ 17.3. Symétries du cube17.3.1. Le groupe octaédral.17.3.2. Algorithme de réduction au domaine fondamental.17.4. Sections planes d'un cube17.4.1. Les sections planes principales17.4.2. Une fonction donnant les sections planes quelconques	 343 343 344 345 345 346 347 349
Chapitre 17. Les sections planes des voxelsJean-Pierre REVEILLÈS17.1. Introduction17.2. Bases du \mathbb{Z} -module $ax + by + cz = 0$ 17.3. Symétries du cube17.3.1. Le groupe octaédral.17.3.2. Algorithme de réduction au domaine fondamental.17.4. Sections planes d'un cube17.4.1. Les sections planes principales17.4.2. Une fonction donnant les sections planes quelconques17.5. Périodicité des sections planes rationnelles des voxels	 343 343 344 345 345 346 347 347 349 351
Chapitre 17. Les sections planes des voxelsJean-Pierre REVEILLÈS17.1. Introduction17.2. Bases du \mathbb{Z} -module $ax + by + cz = 0$ 17.3. Symétries du cube17.3.1. Le groupe octaédral.17.3.2. Algorithme de réduction au domaine fondamental.17.4. Sections planes d'un cube17.4.1. Les sections planes principales17.4.2. Une fonction donnant les sections planes quelconques17.5. Périodicité des sections planes rationnelles des voxels17.5.1. Conclusion	 343 343 344 345 345 346 347 347 349 351 352
Chapitre 17. Les sections planes des voxels Jean-Pierre REVEILLÈS 17.1. Introduction 17.2. Bases du Z-module $ax + by + cz = 0$ 17.3. Symétries du cube 17.3.1. Le groupe octaédral. 17.3.2. Algorithme de réduction au domaine fondamental. 17.4. Sections planes d'un cube 17.4.1. Les sections planes principales 17.4.2. Une fonction donnant les sections planes quelconques 17.5. Périodicité des sections planes rationnelles des voxels 17.6. Bibliographie	 343 343 344 345 345 346 347 347 349 351 352 352
Chapitre 17. Les sections planes des voxelsJean-Pierre REVEILLÈS17.1. Introduction17.2. Bases du Z-module $ax + by + cz = 0$ 17.3. Symétries du cube17.3.1. Le groupe octaédral.17.3.2. Algorithme de réduction au domaine fondamental.17.4. Sections planes d'un cube17.4.1. Les sections planes principales17.5. Périodicité des sections planes rationnelles des voxels17.6. Bibliographie17.6. BibliographieChapitre 18. Visualisation de surfaces implicites à squelettesLaurent LUCAS et Stéphanie PrévOST	 343 343 344 345 345 346 347 347 349 351 352 352 353
Chapitre 17. Les sections planes des voxelsJean-Pierre REVEILLÈS17.1. Introduction17.2. Bases du \mathbb{Z} -module $ax + by + cz = 0$ 17.3. Symétries du cube17.3.1. Le groupe octaédral.17.3.2. Algorithme de réduction au domaine fondamental.17.4. Sections planes d'un cube17.4.1. Les sections planes principales17.5. Périodicité des sections planes rationnelles des voxels17.5.1. Conclusion17.6. BibliographieChapitre 18. Visualisation de surfaces implicites à squelettesLaurent LUCAS et Stéphanie PRÉVOST18.1. Introduction	 343 343 344 345 345 346 347 349 351 352 353 353
Chapitre 17. Les sections planes des voxels	 343 343 344 345 345 346 347 349 351 352 352 353 353
Chapitre 17. Les sections planes des voxels	 343 343 344 345 345 346 347 349 351 352 352 353 353 354

12	Chapitre extrait de l	'ouvrage :	Géométrie discrèt	e et images	numériques

18.3. Visualisation 3D	357
18.3.1. Visualisation surfacique vs. volumique	357
18.3.2. Polygonalisation de surfaces implicites	357
18.3.3. Visualisation directe par lancer de rayons	358
18.4 Visualisation d'une UoB	359
18.4.1 Recherche des intersections	359
18.4.2 Calcul des normales à la surface	361
18.4.2. Calcul des hormales à la sufface	262
18.5. Conclusion	203
18.6. Bibliographie	364
Chapitre 19. Applications de la géométrie discrète en imagerie médicale	365
Grégoire MALANDAIN	505
10.1. Judan American	265
	365
19.2. Visualisation de surfaces	367
19.3. Imposer et contrôler la topologie	368
19.4. Recalage d'images	369
19.5. Segmentation des sillons corticaux	370
19.6. Représentation de structures tubulaires	371
19.7. Conclusion	373
19.8. Bibliographie	373
Chapitre 20. Géométrie discrète sur des supports multirésolution Laure TOUGNE	375
20.1 Introduction	375
20.7. Typologie des grilles multirésolution	376
20.2. Typologie des grines indiffesoration	277
$20.2.1$. Office adaptatives \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $20.2.2$. Grilles réquiring	277
20.2.2. Offices recursives	511
20.2.2.1. Presentation	277
$20, 2, 2, 2, 0, \dots, 1, 0$	377
20.2.2.2. Cas $k = 2$	377378270
20.2.2.2. Cas $k = 2$	377378379
20.2.2.2. Cas $k = 2$	377378379380
20.2.2.2. Cas $k = 2$ 20.2.2.3. Cas $k = 4$ 20.2.2.3. Cas $k = 4$ 20.2.2.4. Cas $k = 8$ 20.3. Approche arithmétique en multi-échelles : le cas des droites discrètes	 377 378 379 380 381
 20.2.2.2. Cas k = 2	377378379380381
 20.2.2.2. Cas k = 2	 377 378 379 380 381 382
 20.2.2.2. Cas k = 2	 377 378 379 380 381 382 383
 20.2.2.2. Cas k = 2	 377 378 379 380 381 382 383 384
20.2.2.2. Cas $k = 2$ 20.2.2.3. Cas $k = 4$ 20.2.2.3. Cas $k = 4$ 20.2.2.4. Cas $k = 8$ 20.3. Approche arithmétique en multi-échelles : le cas des droites discrètes20.4. Vers une généralisation du modèle discret aux grilles isothétiques irrégulières20.5. Conclusion20.6. Bibliographie20.6. Bibliographie	 377 378 379 380 381 382 383 384 387
20.2.2.2. Cas $k = 2$ 20.2.2.3. Cas $k = 4$ 20.2.2.3. Cas $k = 4$ 20.2.2.4. Cas $k = 8$ 20.3. Approche arithmétique en multi-échelles : le cas des droites discrètes20.4. Vers une généralisation du modèle discret aux grilles isothétiquesirrégulières20.5. Conclusion20.6. Bibliographie20.6. BibliographieDavid COEURIOLLY, Annick MONTANVERT et Jean-Marc CHASSERY	 377 378 379 380 381 382 383 384 387
20.2.2.2. Cas $k = 2$ 20.2.2.3. Cas $k = 4$ 20.2.2.3. Cas $k = 4$ 20.2.2.4. Cas $k = 8$ 20.3. Approche arithmétique en multi-échelles : le cas des droites discrètes20.4. Vers une généralisation du modèle discret aux grilles isothétiquesirrégulières20.5. Conclusion20.6. Bibliographie20.6. BibliographieDavid COEURJOLLY, Annick MONTANVERT et Jean-Marc CHASSERY	 377 378 379 380 381 382 383 384 387
 20.2.2.2. Cas k = 2	 377 378 379 380 381 382 383 384 387

	Table des matières	13
Liste des auteurs par ordre alphabétique		393
Index		399

Notations

Points, espaces, ensembles

$d \in \{2, 3\}$	dimension de l'espace (notée n dans les chapitre 5 et 9, de manière à
	garder d pour les distances)
\mathbb{Z}^d	espace discret (\mathbb{Z}^n dans les chapitres 5 et 9)
X, Y, Z	parties de \mathbb{Z}^d
$X \backslash Y$	complémentaire de Y dans X
\overline{X}	complémentaire de X
k,l,m,n,p,q	nombres entiers
x, y, z	coordonnées (entières ou réelles)
t, u, v, λ, μ	nombres réels
A, B, C, M, N, O	points discrets
$\alpha \in \{4, 8, 6, 18, 26\}$	relation d'adjacence
$\overline{\alpha}$	relation d'adjacence du complémentaire

Objets

D	droite réelle
Δ	droite discrète
P	plan réel
П	plan discret
a,b,c,ω	paramètres de droite/plan
$\overrightarrow{V}, \overrightarrow{W}$ et \overrightarrow{AB}	vecteurs
\mathcal{C}	courbe comme ensemble de pixels
S	surface comme ensemble de voxels
Σ	surface comme ensemble de surfels
π	chemin
$N_{\alpha}(P)$	ensemble des points α -adjacents à P
$\mathcal{E},\mathcal{F},\mathcal{K},\mathcal{L}$	ensembles autres que des parties de \mathbb{Z}^d (ensembles de suites, ensembles
	d'ensembles)

Éléments mathématiques

$\mathcal{M}, \mathcal{A}, \mathcal{B}$	matrices
\mathcal{R}	matrice de rotation
f,g,h	applications, fonctions
Φ, Ψ	opérateurs sur d'autres ensembles que $\mathbb{R}^d, \mathbb{Z}^d$
ho, au	rotation et translation
G, Γ	graphes
$ heta,\phi$	angles
ε	seuil
$\lfloor x \rfloor$	entier inférieur le plus proche de x
$\lceil x \rceil$	entier supérieur le plus proche de x
[x]	entier le plus proche de x (par convention, si $x = k + 0.5$ avec $k \in \mathbb{Z}$,
	[x] = k si k est pair, $k + 1$ sinon)
trunc(x)	entier obtenu par suppression de la partie fractionnaire de x
$\{x\}$	partie fractionnaire de x
%	modulo en tant qu'opérateur

- \equiv
- modulo en tant que relation d'équivalence classe d'équivalence pour une relation donnée **[**[a]]

Chapitre 9

Représentation par Axe Médian

9.1. Introduction

Ce chapitre introduit la notion d'*axe médian*. Pour se faire une idée intuitive de ce concept, imaginons une forme recouverte d'une prairie et supposons qu'un feu soit allumé à l'instant t = 0 sur sa frontière. Le feu se propage à vitesse constante dans la prairie, comme illustré sur la figure 9.1. Intuitivement, l'axe médian est le lieu des points où deux fronts du feu se rencontrent. Si le feu est allumé sur la frontière d'une forme de \mathbb{R}^n , on obtient un axe médian de dimension n-1. Dans le plan, l'axe médian est un graphe, dont les branches sont des courbes associées aux différentes régions de la forme¹.

Figure 9.1. Axe médian d'une forme ayant pour frontière la courbe extérieure [ATT 07].

Ce chapitre a été rédigé par Dominique ATTALI, David COEURJOLLY et Eric REMY.

^{1.} Comme dans le chapitre 5, nous réservons la notation d pour les distances et choisissions n comme dimension de l'espace.

L'axe médian a trouvé de nombreuses applications en analyse d'images pour la reconnaissance et la description de formes [SON 99], ou en robotique pour la planification de trajectoires [LAT 91]. L'information de distance à la frontière, mémorisée en chaque point de l'axe médian, fournit une information d'épaisseur qui peut être utilisée pour segmenter les objets, les séparant en larges régions connectées par des parties relativement plus étroites [CHE 93, DEY 03, OGN 94]. L'axe médian permet également en génération de maillages, de contrôler l'orientation et de grader la taille des éléments utilisés pour mailler un domaine [PRI 97, SHE 99]. Il a trouvé des applications dans le design ou l'animation en fournissant des outils de manipulation interactive des formes [HIS 02, HOF 89]. Enfin, l'axe médian est apparu de façon naturelle en ingénierie inverse, où il caractérise la densité d'échantillonnage nécessaire à la reconstruction d'une forme à partir d'un nuage de points échantillonnant sa frontière [AME 99, AME 98, CHA 06].

Après avoir introduit formellement l'axe médian section 9.2, nous verrons que cet ensemble permet de coder sans perte la forme : la section 9.3 détaille comment reconstruire la forme à partir d'un axe médian calculé à l'aide de la distance de chanfrein ou de la distance euclidienne. Nous verrons ensuite dans la section 9.4 deux techniques pour identifier les points faisant partie de l'axe médian. Dans la section 9.5, nous définissons et calculons un sous-ensemble de l'axe médian qui garde la propriété de reconstruire exactement la forme. Enfin, nous concluons dans la section 9.6 en mentionnant des problèmes de stabilité de l'axe médian ainsi que de codage minimal d'une forme.

9.2. Axes médians et squelettes

Nous commençons par définir la notion d'axe médian pour des ouverts de \mathbb{R}^n avant de la définir pour des sous-ensembles de \mathbb{Z}^n .

9.2.1. Formes continues

Il n'existe pas de consensus autour de la notion d'axe médian et sa définition change d'un auteur à l'autre. Dans ce chapitre, nous adoptons la convention adoptée en géométrie discrète, qui est différente de celle adoptée en géométrie algorithmique. Considérons une forme continue $X \subseteq \mathbb{R}^n$ et supposons que X soit un ouvert borné de \mathbb{R}^n . La *boule ouverte* de centre p et de rayon r est l'ensemble des points dont la distance euclidienne à p est inférieure strictement à r:

$$B^{<}(p,r) = \{ q \in \mathbb{R}^n \mid ||p - q|| < r \}.$$

Une boule ouverte $B \subseteq X$ est maximale dans X si pour toute boule ouverte B',

$$B \subseteq B' \subseteq X \quad \Rightarrow \quad B = B'.$$

L'axe médian, AM(X), est l'ensemble des centres des boules maximales de X. Le squelette est une notion voisine qui formalise l'image du feu de prairie utilisée dans l'introduction pour décrire de façon intuitive l'axe médian. Il a été introduit pour la première fois par BLUM [BLU 67]. Formellement, le squelette de X est l'ensemble des points qui ont au moins deux points les plus proches dans le complémentaire de X. Les notions de squelette et axe médian sont proches mais non équivalentes. En effet, le squelette est contenu dans l'axe médian qui est lui-même contenu dans la fermeture du squelette [MAT 88, chapitre 11]. Cependant, pour les unions finies de boules ouvertes, les deux notions coïncident.

Une propriété fondamentale du squelette est qu'il a le même type d'homotopie que la forme. LIEUTIER établit ce résultat pour des ouverts bornés de \mathbb{R}^n [LIE 03]. Contrairement aux travaux précédents [SHE 96], il ne fait aucune hypothèse de régularité de la frontière. Deux fonctions $f, g : X \to Y$ sont homotopes s'il existe une fonction continue $H : X \times [0, 1] \to Y$ telle que H(x, 0) = f(x) et H(x, 1) = g(x). Deux espaces X et Y ont même type d'homotopie s'il existe deux applications continues $f : X \to Y$ et $g : Y \to X$ telles que $g \circ f$ est homotope à l'identité de X et $f \circ g$ est homotope à l'identité de Y. Intuitivement, une forme et son squelette sont donc connectés de la même façon, indépendamment de leurs dimensions respectives. Ils possèdent en particulier les mêmes groupes d'homologie. Dans \mathbb{R}^3 , ils ont le même nombre de composantes connexes, trous et cavités.

Si nous étiquetons chaque point p de l'axe médian par le rayon $\delta(p)$ de la boule maximale centrée en p, nous avons assez d'information pour reconstruire la forme. En d'autres termes, l'axe médian muni de la fonction δ fournit un codage réversible :

$$X = \bigcup_{p \in AM(X)} B^{<}(p, \delta(p)).$$

Ce codage n'est pas forcément minimal et certaines formes, comme par exemple les unions finies de boules, peuvent être reconstruites à partir d'un sous-ensemble propre de l'axe médian pondéré. Ceci nous conduira à introduire l'axe médian réduit dans la section 9.5.

9.2.2. Formes discrètes

Nous transposons à présent la définition d'axe médian pour une forme discrète $X \subseteq \mathbb{Z}^n$ et un choix de distance discrète $d : \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{N}$ (voir chapitre 5). Nous appelons *boule discrète stricte* de centre P et de rayon r associée à la distance d:

$$B_d^{<}(P, r) = \{ Q \in \mathbb{Z}^n \mid d(P, Q) < r \},\$$

que nous noterons simplement $B^{<}(P, r)$ lorsqu'il n'y a pas d'ambiguïté sur la distance discrète utilisée. Dans ce qui suit, quand nous parlons de boules sans plus de précision,

il s'agira toujours de boules discrètes strictes. Une boule *B* est maximale dans *X* si et seulement si toute boule contenant *B* et contenue dans *X* est égale à *B*. L'*axe* médian discret $AM = AM_d(X)$ est l'ensemble des centres des boules discrètes strictes maximales de *X* pour la distance *d*. L'axe médian discret, pondéré par la fonction δ , préserve la propriété de codage réversible, mais ne préserve pas le type d'homotopie.

9.3. Reconstruction à partir des boules maximales

Dans cette section, nous montrons comment reconstruire une forme discrète à partir de son axe médian pondéré (réduit ou non). Plus précisément, supposons que l'axe médian ait été calculé, par exemple comme expliqué dans la section suivante, ou encore sa version réduite comme expliqué dans la section 9.5. Notons $(P_k, r_k) \in \mathbb{Z}^n \times \mathbb{N}$ avec $1 \le k \le l$, les centres et rayons d'un ensemble de boules maximales couvrant la forme. Reconstruire la forme consiste à calculer l'union :

$$X = \bigcup_{1 \le k \le l} B_d^{<}(P_k, r_k)$$

Les paragraphes suivants décrivent deux implantations rapides de ce processus de reconstruction, d'une part pour les distances de chanfrein, d'autre part pour la distance euclidienne.

9.3.1. Reconstruction avec les distances de chanfrein

Pour une distance de chanfrein telle que celles vues au chapitre 5, il est aisé de reconstruire la forme initiale à partir des points de l'axe médian en utilisant une version modifiée de l'algorithme de transformation de distance (voir algorithme 5 du chapitre 5). En effet, ce nouvel algorithme, qui est appelé *transformation de distance inverse*, obtenu en remplaçant la recherche de minimum par une recherche de maximum, a pour effet de propager, non plus la plus petite distance au complémentaire, mais la plus grande distance à des points non-nuls (les centres des boules maximales P_k , affectés des valeurs de rayons correspondantes r_k). L'effet obtenu est donc de faire grossir un ensemble de boules de chanfrein strictes centrées sur les points de l'axe médian, ce qui régénère la forme (les points non-nuls de l'image finale) de manière exacte.

9.3.2. Reconstruction avec la distance euclidienne

Reconstruisons à présent la forme lorsque la distance discrète utilisée est la distance euclidienne, $d = d_E$ (on parle alors d'algorithme REDT pour *Reverse Euclidean Distance Transform*). Dans ce cas, la boule discrète stricte de centre P_k et de rayon r_k est l'ensemble des points $Q \in \mathbb{Z}^n$ pour lesquels $r_k^2 - ||Q - P_k||^2 > 0$. Un point Q appartient à l'union des boules $X=\bigcup_k B_d^<(P_k,r_k)$ si et seulement si il existe un indice k pour lequel $r_k^2-\|Q-P_k\|^2>0.$ On en déduit que

$$X = \{Q \in \mathbb{Z}^n \mid \max_{1 \le k \le l} \{r_k^2 - \|Q - P_k\|^2\} > 0\}.$$

Pour obtenir un algorithme efficace, considérons l'image $f : \mathbb{Z}^n \to \mathbb{Z}$ obtenue en formant $f(P_k) = r_k^2$ et f(Q) = 0 pour $Q \notin \{P_1, \ldots, P_l\}$ ainsi que l'image $h : \mathbb{Z}^n \to \mathbb{Z}$ telle que :

$$h(Q) = \max_{P \in \mathbb{Z}^n} \left\{ f(P) - \|Q - P\|^2 \right\}$$

La forme X peut être retrouvée en conservant les valeurs strictement positives de h, $X = \{P \in \mathbb{Z}^n \mid h(P) > 0\}$. Ainsi, pour reconstruire X, il suffit de calculer h. Comme dans le cas d'une construction de la transformée en distance avec une distance euclidienne (voir chapitre 5), nous décomposons ce processus de maximisation dimension par dimension (voir figure 9.2). Pour plus de clarté, nous considérons la reconstruction en dimension 2, la généralisation en dimension n se faisant aisément. En dimension 2, avec la notation P = (x, y) des points discrets et en supposant que $X \subseteq [1, m]^2$, nous cherchons à calculer :

$$h(x,y) = \max_{1 \le i,j \le m} \left\{ f(i,j) - (x-i)^2 - (y-j)^2 \right\}.$$
(9.1)

Pour cela, nous procédons en deux étapes. Nous construisons tout d'abord l'image $g:[1,m]^2 \to \mathbb{Z}$ telle que :

$$g(x,y) = \max_{1 \le i \le m} \{ f(i,y) - (x-i)^2 \}$$

L'image h est ensuite donnée à partir de g par :

$$h(x,y) = \max_{1 \le j \le m} \{g(x,j) - (y-j)^2\}.$$

Pour chacune de ces étapes, nous avons à calculer l'enveloppe supérieure d'une famille de paraboles, définies comme les graphes des fonctions $\{\mathcal{F}_i^y(x) = f(i, y) - (x - i)^2\}_{1 \le i \le m}$ et $\{\mathcal{G}_j^x(y) = g(x, j) - (j - y)^2\}_{1 \le j \le m}$. Or, dans le chapitre 5 (paragraphe 5.4.2), nous avons présenté un algorithme très similaire pour calculer une enveloppe de paraboles en O(m). La seule différence est que les paraboles sont cette fois inversées et que la fonction de séparation est donnée par $\mathcal{S}ep(u, v) = (u^2 - v^2 - f(u, y) + f(v, y))$ div (2(u - v)) (voir figure 9.3).

Finalement, en appliquant l'algorithme de la figure 9.3 pour toutes les dimensions, nous obtenons un algorithme de reconstruction dont la complexité est linéaire aux nombres de points discrets de la grille [COE 07].

\bigcirc									ł	ł	ł	ł	ł	ł	ł
0 0 0 0 0 2 0		0	0	0	0	1	2	1	0	0	0	0	1	2	1
0 0 0 0 0 0 0	-	0	0	0	0	0	0	0	0	2	3	2	0	1	0
0 0 4 0 0 1 0	-	0	3	4	3	0	1	0	0	3	4	3	0	1	0
0 0 0 0 0 0 0	-	0	0	0	0	0	0	0	0	2	3	2	0	0	0

Figure 9.2. Illustration du processus dimension par dimension pour la reconstruction en distance euclidienne.

Figure 9.3. Illustration du processus dimension par dimension pour la reconstruction en distance euclidienne.

9.4. Extraction de l'axe médian

Dans cette section, nous calculons l'axe médian d'une forme discrète $X \subseteq \mathbb{Z}^n$. Supposons que *d* soit la distance discrète choisie pour définir les boules. Nous avons vu dans la section 5.4 que la transformée de distance $DT : \mathbb{Z}^n \to \mathbb{N}$ associe à chaque point *P* sa distance au complémentaire de *X* :

$$DT[P] = \min_{Q \in \overline{X}} d(P, Q).$$

Il n'est pas difficile de voir que DT[P] donne précisément le rayon de la plus grande boule stricte centrée en P et contenue dans la forme, $B(P) = B^{<}(P, DT[P])$. Pour déterminer si un point P appartient à l'axe médian, il suffit donc de tester pour tout vecteur $\overrightarrow{V} \in \mathbb{Z}^n$ si la boule centrée en $P + \overrightarrow{V}$ et de rayon $DT[P + \overrightarrow{V}]$ recouvre la boule centrée en P et de rayon DT[P], autrement dit si $B(P) \subseteq B(P + \overrightarrow{V})$. Dans le cas où aucune boule $B(P + \overrightarrow{V})$ ne recouvre B(P), le point P appartient à l'axe médian.

9.4.1. Caractérisations des centres de boules maximales

Nous donnons une première caractérisation des points de l'axe médian, valable pour les distances discrètes d_1 et d_{∞} (définies dans le chapitre 5.2.1) et proposée pour la première fois dans [ROS 66]. Notons \mathcal{M} le masque de chanfrein de la distance discrète d.

CARACTÉRISATION PAR MASQUE DE CHANFREIN :

$$P \in AM \quad \Longleftrightarrow \quad DT[P + \overrightarrow{V}] < DT[P] + w , \ \forall (\overrightarrow{V}, w) \in \mathcal{M}.$$

Pour un masque de chanfrein de cardinal k, cette caractérisation fournit un critère efficace d'appartenance d'un point P à l'axe médian, consistant à examiner k points $P + \vec{V}$ autour de P. L'idée qu'exprime ce critère est que si un point ne propage pas son information de distance au bord à un autre point lors de la transformation de distance, alors il est le centre d'une boule maximale. Hélas, ce critère, très simple à mettre en œuvre, ne convient que pour les distances discrètes d_1 et d_∞ . En effet, lorsqu'un vecteur unitaire \vec{V} n'est plus associé à un poids unitaire w, apparaît le problème des boules équivalentes : des boules de même centre mais de rayons différents r et r'peuvent correspondre à un même ensemble de points. On dit alors que les rayons r et r' font partie de la même classe d'équivalence. Dans ce cas, le critère détecte un surensemble de l'axe médian. Une correction est connue pour les masques de taille trois ; elle consiste à modifier la carte de distance pour abaisser chaque valeur de rayon au plus petit représentant de sa classe d'équivalence. Par exemple, avec la distance $d_{3,4}$ dans le plan, ARCELLI et SANITI DI BAJA [ARC 88] ont montré qu'il suffit d'abaisser les valeurs 3 à 1 et les 6 à 5 sur l'image de distance pour que la caractérisation par masque de chanfrein puisse encore être utilisée et donne un résultat correct.

Nous voyons à présent une seconde caractérisation des points de l'axe médian, qui étend la caractérisation précédente à toutes distances discrètes. Pour cela, notons $O \in \mathbb{Z}^n$ l'origine et introduisons $\text{Lut}(\overrightarrow{V}, r)$, le rayon de la plus petite boule centrée en $O + \overrightarrow{V}$ et qui contient la boule de centre O et de rayon r:

$$Lut(V, r) = \min \{ r' \mid B^{<}(O, r) \subseteq B^{<}(O + V, r') \}$$

Puisque l'inclusion entre boules est invariante par translation, $\operatorname{Lut}(\overrightarrow{V}, r)$ représente également le rayon de la plus petite boule centrée en $P + \overrightarrow{V}$ et contenant $B^{<}(P, r)$. Par conséquent, $B^{<}(P, r) \subseteq B^{<}(P + \overrightarrow{V}, \operatorname{Lut}(\overrightarrow{V}, r))$ et cette dernière est incluse dans la forme si et seulement si $\operatorname{Lut}(\overrightarrow{V}, r) \leq DT[P + \overrightarrow{V}]$. BORGEFORS, RAGNEMALM et SANNITI DI BAJA [BOR 91] en déduisent une caractérisation des points de l'axe médian :

CARACTÉRISATION PAR TABLE DE CORRESPONDANCE :

$$P \in \mathbf{A}\mathbf{M} \quad \Longleftrightarrow \quad DT[P + \overrightarrow{V}] < \mathrm{Lut}(\overrightarrow{V}, DT[P]) \;, \; \; \forall \overrightarrow{V} \in \mathcal{V}.$$

La caractérisation dépend d'un ensemble de vecteurs $\mathcal{V} \subseteq \mathbb{Z}^n$ appelé *voisinage* de test et que nous cherchons le plus petit possible. Pour $\mathcal{V} = \mathbb{Z}^n$, l'équivalence est vraie par définition de l'axe médian. Notons s le rayon de la plus grande boule centrée dans la forme. Puisque toute boule non maximale B(P) est incluse dans une boule maximale $B(P + \vec{V})$ de rayon au plus s, on en déduit que $O + \vec{V}$ appartient à $B^{<}(O, s)$. Il suffit donc de considérer comme voisinage de test l'ensemble des vecteurs qui, placés en l'origine, ont leur extrémité dans $B^{<}(O, s)$ pour que l'équivalence soit encore vraie. Dans la section 9.4.3, nous en sélectionnons un sous-ensemble \mathcal{V} . La caractérisation par table de correspondance induit ainsi un algorithme de calcul de l'axe médian en quatre étapes :

- 1) Calcul de l'image de distance, DT;
- 2) Calcul de la taille des objets, $s = \max_P DT[P]$;
- 3) Calcul du voisinage de test \mathcal{V} et de Lut sur $\mathcal{V} \times [0, s]$;
- 4) Extraction des points de l'axe médian, à l'aide de DT, V et Lut.

L'étape 3) ne nécessite pas de connaître la forme X mais uniquement une borne sur la taille de ses boules maximales. Les valeurs de la fonction Lut peuvent donc être précalculées une fois pour toutes, et rangées dans une *table de correspondance (Look-Up Table* en anglais), d'où le nom donné à la fonction. Les sections suivantes expliquent le calcul de la table Lut et de l'ensemble des vecteurs \mathcal{V} .

9.4.2. Calcul de la table de correspondance

Nous faisons l'hypothèse que les boules de la distance discrète considérée sont convexes, *G*-symétriques (voir paragraphe 5.3.2) et croissantes pour l'inclusion, ce qui inclut en particulier le carré de la distance euclidienne. Calculer $\text{Lut}(\vec{V}, r)$ revient alors à calculer le rayon de la plus petite boule centrée en *O* et qui contient $B^{<}(V, r)$. Pour cela, les points du bord extérieur de $B^{<}(V, r)$ sont parcourus et le maximum de leur distance à l'origine donne $\text{Lut}(\vec{V}, r)$.

Dans la pratique, dans l'algorithme 16, nous calculons dans un premier temps CT^g , la carte de distance à l'origine de l'espace $G(\mathbb{Z}^n) = \{(x_1, \ldots, x_n) \in \mathbb{Z}^n \mid x_1 \geq \ldots \geq x_n \geq 0\}$, ce qui permet ensuite en temps constant d'évaluer, pour tout point du bord de $B^{<}(\vec{V}, r)$, sa distance à l'origine. Ce calcul de CT^g est donné à l'algorithme 17 pour les distances de chanfrein; il est trivial pour d_E . Puisque les boules de la distance sont G-symétriques, on limite les calculs aux vecteurs \vec{V} qui, placés en l'origine, ont leurs extrémités dans la région $G(\mathbb{Z}^n)$. En effet, pour tout autre vecteur \vec{V}' obtenu en permutant les coordonnées de \vec{V} et en changeant le signe de certaines coordonnées, on a $\text{Lut}(\vec{V}', r) = \text{Lut}(\vec{V}, r)$. Les lignes 1 à 4 forment la recherche du minimum des rayons r_2 des boules recouvrant dans la direction \vec{V} la boule de rayon r_1 .

Des configurations spécifiques au monde discret font qu'il est courant de trouver, à l'issue du calcul de $\text{Lut}(\vec{V}, r)$, des cas où $r_a < r_b$ alors que $\text{Lut}(\vec{V}, r_a) > \text{Lut}(\vec{V}, r_b)$. Aux lignes 5 à 7, nous corrigeons la table en supposant que, dans ce cas, $\text{Lut}(\vec{V}, r_b)$ doit être au moins égal à $\text{Lut}(\vec{V}, r_a)$.

Algorithme 16 : Calcul d'une colonne de la table de correspondance.
Données : CT^g le cône de distance de taille L (en pixel), $\overrightarrow{V} = (V_x, V_y, V_z) \in G(\mathbb{Z}^3)$ la direction dans laquelle s'effectue la recherche, s le plus grand rayon susceptible d'être rencontré tenant ici lieu de borne supérieure de recherche.
Résultat : La colonne $\operatorname{Lut}[\overrightarrow{V}][r]$ remplie pour toute valeur de $r \in [0s]$.
1 pour r de 0 à s faire $\operatorname{Lut}[\overrightarrow{V}][r] := 0$;
2 pour x de 0 à $L - V_x - 1$, y de 0 à x, et z de 0 à y faire
3 $r_1 := CT^g[(x, y, z)] + 1; r_2 := CT^g[(x, y, z) + \overrightarrow{V}] + 1;$
4 $\left[\text{ si } r_1 \leq s \text{ et } r_2 > \operatorname{Lut}[\overrightarrow{V}][r_1] \text{ alors } \operatorname{Lut}[\overrightarrow{V}][r_1] := r_2; \right]$
5 $r_b := 0$;
6 pour $r_a de 0 \dot{a} s$ faire
7 $\lfloor \text{ si Lut}[\overrightarrow{V}][r_a] > r_b \text{ alors } r_b := \text{Lut}[\overrightarrow{V}][r_a] \text{ sinon Lut}[\overrightarrow{V}][r_a] := r_b ;$

9.4.3. Calcul du voisinage de test

Notons $\operatorname{AM}^{\mathcal{V}}(X)$, l'ensemble des points détectés par le critère avec table de correspondance :

$$\operatorname{AM}^{\mathcal{V}}(X) = \{ P \in \mathbb{Z}^n \mid DT[P + \overrightarrow{V}] < \operatorname{Lut}(\overrightarrow{V}, DT[P]), \, \forall \overrightarrow{V} \in \mathcal{V} \}.$$

et construisons un ensemble de vecteurs \mathcal{V} tel que $\mathrm{AM}^{\mathcal{V}}(X) = \mathrm{AM}(X)$. Pour cela, considérons la suite emboîtée des boules strictes B_r centrées en l'origine et de rayon r. Chacune de ces boules a pour seul point de l'axe médian l'origine. Nous construisons \mathcal{V} incrémentalement de façon qu'à chaque étape, \mathcal{V} permette d'extraire correctement l'axe médian de B_r , autrement dit $\mathrm{AM}^{\mathcal{V}}(B_r) = \{O\}$. Initialement, nous posons

Algorithme 17 : Calcul des distances à l'origine de chaque point de $G(\mathbb{Z}^3)$ pour la distance de chanfrein d_c .

```
 \begin{array}{c} \textbf{Données}: L \text{ la largeur désirée pour l'image } CT^g, G(\mathcal{M}) \text{ le générateur du masque de chanfrein.} \\ \textbf{Résultat}: CT^g \text{ le cône de distance.} \\ \textbf{1} \quad CT^g[(0,0,0]] := 0; \\ \textbf{2} \quad \textbf{pour } x \ de \ l \ a \ L - 1, y \ de \ 0 \ a \ x, et \ z \ de \ 0 \ a \ y \ \textbf{faire} \\ \textbf{3} \\ \textbf{min} = +\infty; \\ \textbf{pour tous les} \ (\overrightarrow{V}, w) \in G(\mathcal{M}) \ \textbf{faire} \\ \textbf{5} \\ \textbf{6} \\ \textbf{7} \\ \begin{array}{c} (x', y', z') := (x, y, z) - \overrightarrow{V}; \\ \textbf{si} \ (x', y', z') := (x, y, z) - \overrightarrow{V}; \\ \textbf{si} \ (x', y', z') \in G(\mathbb{Z}^3) \ et \ CT^g[(x', y', z')] + w < \min \ \textbf{alors} \\ \textbf{7} \\ \textbf{8} \\ CT^g[(x, y, z)] = \min; \\ \end{array} \right.
```

 $\mathcal{V} = \emptyset$. Puis, pour r allant de 1 à s, nous ajoutons à \mathcal{V} tout point de $\mathrm{AM}^{\mathcal{V}}(B_r)$ distinct de l'origine [REM 01, REM 05]. Parallèlement, nous maintenons la table de correspondance Lut sur $\mathcal{V} \times [0, r]$. L'ajout d'un nouveau vecteur \overrightarrow{V} dans \mathcal{V} à l'étape r a pour effet d'ajouter dans la table une nouvelle ligne pour le vecteur \overrightarrow{V} . Nous ajoutons également une nouvelle colonne pour la valeur r. A la fin du calcul, nous obtenons un ensemble de vecteurs \mathcal{V} , permettant d'extraire correctement l'axe médian d'une boule centrée en l'origine et de rayon s.

LEMME **9.1** V permet d'extraire correctement l'axe médian de toute forme X ayant des boules maximales de rayon plus petit ou égal à s.

Démonstration : Par l'absurde. Supposons que $P \in AM^{\mathcal{V}}(X)$ et $P \notin AM(X)$. Alors, il existe un point Q tel que $B^{<}(P, r) \subseteq B^{<}(Q, t) \subseteq X$, avec r = DT[P] et t = DT[Q]. Après une translation qui amène le centre de la seconde boule en l'origine, on obtient $B^{<}(P-Q, r) \subseteq B^{<}(O, t)$. Or, par construction de \mathcal{V} , le point P-Q n'est pas détecté comme faisant partie de l'axe médian de $B^{<}(O, t)$. Par conséquent, il existe un vecteur $\overrightarrow{V} \in \mathcal{V}$ et un entier r' tels que $B^{<}(P-Q, r) \subseteq B^{<}(P-Q+\overrightarrow{V}, r') \subseteq B^{<}(O, t)$. En translatant ces trois boules de façon à ramener le centre de la dernière au point Q, on obtient $B^{<}(P, r) \subseteq B^{<}(P+\overrightarrow{V}, r') \subseteq X$ avec $\overrightarrow{V} \in \mathcal{V}$, ce qui contredit le fait que $P \in AM^{\mathcal{V}}(X)$.

Les boules mises en œuvre étant G-symétriques, l'ensemble de vecteurs \mathcal{V} est lui aussi G-symétrique. On notera donc, sur le même principe que pour les masques de chanfrein, $G(\mathcal{V}) = \mathcal{V} \cap G(\mathbb{Z}^n)$ l'ensemble des vecteurs de \mathcal{V} permettant de retrouver par G-symétrie le voisinage de test complet. L'algorithme 18 réalise cette construction incrémentale de $G(\mathcal{V})$ pour toute distance dont les boules sont G-symétriques. Les algorithmes 19 et 20 réalisent respectivement une transformation de distance sur une portion de boule $B^{<} \cap G(\mathbb{Z}^n)$ et l'extraction de l'axe médian sur la carte de distance ainsi produite. Une fois que l'algorithme 18 a permis d'identifier $G(\mathcal{V})$ pour une distance d et un rayon s donné, il est crucial de conserver ces informations pour un usage ultérieur. En effet, pour continuer la validation jusqu'à un $s' \ge s$, il suffit d'initialiser le masque (ligne 2) au $G(\mathcal{V})$ précédemment trouvé, puis de reprendre la boucle de la ligne 3 de s + 1 à s'.

Algorithme 18 : Valide la méthode d'extraction de l'axe médian pour tout objet d'épaisseur inférieure à s, éventuellement en étendant le voisinage de test \mathcal{V} .

Données : La largeur L des images, le rayon s pour lequel la table Lut et le voisinage \mathcal{V} doivent être validés, d la distance considérée (par exemple d_c ou d_E). **Résultat** : La table de correspondance Lut et le générateur du voisinage de test $G(\mathcal{V})$. 1 Calcul de CT^g en fonction de L (voir Algorithme 17 pour $d = d_c$; trivial pour $d = d_E$); 2 $G(\mathcal{V}) = \emptyset$; 3 pour r de 0 a s faire **pour** x de 0 a L - 1, y de 0 a x, et z de 0 a y faire 4 | si $CT^{g}[(x, y, z)] \leq r$ alors $DT^{g}[(x, y, z)] = 1$; sinon $DT^{g}[(x, y, z)] = 0$; 5 Transformation de distance DT^g dans $G(\mathbb{Z}^3)$ (voir Algo. 19 pour $d = d_c$); 6 **pour** x de 1 à L - 1, y de 0 à x, et z de 0 à y faire 7 8 si $DT^{g}[(x, y, z)] \neq 0$ et $(x, y, z) \in AM^{g}$ (voir Algorithme 20) alors $G(\mathcal{V}) := G(\mathcal{V}) \cup \{(x, y, z)\};$ 9 Calcul de Lut[(x, y, z)] en fonction de CT^{g} , (x, y, z) et s (voir Algo. 16); 10

Algorithme 19 : Algorithme de transformation de distance (voir section 5.4.1) en une seule passe dans le cas d'une portion de boule incluse dans $G(\mathbb{Z}^3)$.

 $\begin{array}{c|c} \textbf{Donn\acute{es}}: DT^g \text{ l'image de largeur } L (en \text{ voxels}) \text{ incluse dans } G(\mathbb{Z}^3), G(\mathcal{M}) \text{ le générateur du masque de chanfrein.} \\ \textbf{Résultat}: La carte de distance <math>DT^g \text{ limitée au cône.} \\ \textbf{1 pour } z \ de \ L - 1 \ a \ 0, y \ de \ L - 1 \ a \ z, et \ x \ de \ L - 1 \ a \ y \ \textbf{faire} \\ \textbf{si } DT^g[(x, y, z)] \neq 0 \ \textbf{alors} \\ \textbf{si } DT^g[(x, y, z)] \neq 0 \ \textbf{alors} \\ \textbf{si } DT^g[(x, y, z)] \neq 0 \ \textbf{alors} \\ \textbf{min} = +\infty; \\ \textbf{pour tous les } (\overrightarrow{V}, w) \in G(\mathcal{M}) \ \textbf{faire} \\ \textbf{si } x' < L \ et \ DT^g[(x', y', z')] + w < \min \ \textbf{alors} \ min = DT^g[(x', y', z')] + w; \\ \textbf{7} \\ \end{array}$

9.4.4. Exemples

La figure 9.4 présente le résultat de la méthode appliquée à la distance discrète, ayant pour générateur de masque de chanfrein $G(\mathcal{M}) = \{((1,0,0),7), ((1,1,0),10), ((1,1,1),13), ((2,1,1),18)\}$. La table Lut est obtenue

Algorithme 20 : Détermine si un point P fait partie de l'axe médian AM^g de	la
portion de boule comprise dans $G(\mathbb{Z}^3)$.	
Données : P le point à tester, $G(\mathcal{V})$ le générateur du voisinage de test, Lut la table de	

correspondance, DT^g la carte de distance de la portion de boule. **Résultat** : Renvoie Vrais il e point P fait partie de l'axe médian de DT^g . 1 pour tous les $\vec{V} \in G(\mathcal{V})$ tels que $P - \vec{V} \in G(\mathbb{Z}^3)$ faire 2 $\left[si DT^g [P - \vec{V}] \ge Lut[\vec{V}][DT^g [P]]$ alors retourner Faux ; 3 retourner Vrai ;

par un appel à l'algorithme 16 pour chaque colonne du générateur du masque de test $G(\mathcal{V}) = \{(1,0,0), (1,1,0), (1,1,1), (2,1,1)\}$. Ce générateur de masque $G(\mathcal{V})$, issu de l'algorithme 18, est un cas particulier : ses vecteurs sont les mêmes que ceux de $G(\mathcal{M})$; cela est loin d'être systématique ! Cette table (figure 9.4) indique par exemple que la boule de rayon R = 7 est recouverte par une boule de rayon 8 dans la direction (1,0,0) ou ses symétriques, par une boule de rayon 11 dans la direction (1,1,0) ou ses symétriques, etc. Pour des raisons de place, la table ne contient que les valeurs qui diffèrent du critère de *caractérisation par masque de chanfrein* : ainsi, une boule de rayon R = 14 est recouverte par une boule de rayon 24 = 14 + 10 dans la direction (1,1,0) ou ses symétriques. Pour des rayons $R \ge 57$, la caractérisation par masque de chanfrein est suffisante.

R	(1,0,0)	(1, 1, 0)	(1, 1, 1)	(2, 1, 1)	R	(1,0,0)	(1, 1, 0)	(1, 1, 1)	(2, 1, 1)	R	(1,0,0)	(1, 1, 0)	(1, 1, 1)	(2, 1, 1)	R	(2, 1, 1)
7	8	11	14	19	20	26	29	32	37	28			40		38	50
10	15	18	19	26	23	29	32	34	40	30	36	39	42	47	43	55
13	18	21	24	29	24	29				33			45		46	58
14	19				25			37		34	40				48	60
17	22	25	27	33	26			37		35			47		56	68
18			29		27	33				36			47			

Figure 9.4. Table Lut produite pour la norme induite par le générateur de masque de chanfrein $G(\mathcal{M}) = \{((1,0,0),7), ((1,1,0),10), ((1,1,1),13), ((2,1,1),18)\}$ (voir section 9.4.4).

Sur la figure 9.5.(a), on peut voir un exemple d'objet 3D constitué de trois composantes connexes : un personnage, un cube et une boule euclidienne. En (b), on voit l'axe médian issu d'une carte de distance basée sur la distance de chanfrein définie précédemment et la table Lut correspondant à la figure 9.4. Les valeurs de rayon lues sur la carte de distance se traduisent par des courbes de niveau dans l'objet, variant linéairement ici. On remarquera que le taux d'erreur par rapport à la distance euclidienne de cette distance de chanfrein étant de 4,63%, beaucoup de boules maximales de chanfrein sont nécessaires pour coder complètement la forme de la boule euclidienne. On peut voir cela comme un pire cas : la majorité de ces boules de chanfrein ne codent que quelques voxels sur le bord de la sphère. Sur l'image (c), l'axe médian est calculé à partir (du carré) de la distance euclidienne. Les courbes de niveau varient donc de manière quadratique. On pourrait être surpris de voir que l'axe médian de la boule euclidienne n'est pas réduit à un seul point mais il faut se rappeler que cela n'arrive que si le centre de la boule est précisement placé au centre d'un voxel de la grille, ce qui n'est pas le cas ici.

Figure 9.5. (a) Objet discret constitué d'un personnage, d'un cube et d'une boule euclidienne discétisée. (b) Axe médian obtenu par la norme de chanfrein décrite au §9.4.4. (c) Axe médian obtenu par la distance euclidienne.

9.5. Extraction d'un axe médian réduit sans table de correspondance

Dans cette section, nous nous plaçons dans le cas où la distance discrète utilisée est la distance euclidienne. Nous introduisons *l'axe médian réduit* qui fournit un codage plus compact que l'axe médian discret pour les formes discrètes, tout en permettant de les reconstruire exactement. Après avoir défini formellement l'axe médian réduit comme un sous-ensemble particulier de l'axe médian discret, nous en présentons un schéma de construction.

Pour simplifier, nous nous plaçons dans un espace de dimension n = 2. Néanmoins, nous parlons encore de boules plutôt que de disques. Toutes les définitions et résultats présentés se généralisent en dimension quelconque.

9.5.1. Paraboloïdes elliptiques

Nous commençons par donner une caractérisation des points de l'axe médian s'appuyant sur un relèvement des boules et des formes dans \mathbb{R}^3 . Par la suite, nous identifions les points (x, y) de \mathbb{R}^2 aux points (x, y, 0) de \mathbb{R}^3 . Considérons une boule ouverte

 $B \subseteq \mathbb{R}^2$ de centre (i, j) et de rayon r et notons

$$h_B(x,y) = r^2 - (x-i)^2 - (y-j)^2$$

La boule *B* est l'ensemble des points (x, y) tels que $h_B(x, y) > 0$. Nous associons à *B* le paraboloïde elliptique \mathcal{P} de \mathbb{R}^3 défini comme l'ensemble des points $(x, y, z) \in \mathbb{R}^3$ d'équation $z = h_B(x, y)$. La relation géométrique entre la boule *B* et le paraboloïde \mathcal{P} est la suivante : les points en-dessous du paraboloïde \mathcal{P} intersectent le plan z = 0 en la boule *B*. Nous appelons *dôme* associé à *B* l'ensemble des points $(x, y, z) \in \mathbb{R}^3$ au-dessous du paraboloïde \mathcal{P} et au-dessus du plan z = 0 :

$$B = \{ (x, y, z) \in \mathbb{R}^3 \mid 0 \le z < h_B(x, y) \}$$

La restriction du dôme au plan z = 0 redonne la boule B. Cet objet a été proposé pour la première fois dans [SAI 94] pour caractériser les points de l'axe médian. Considérons une forme continue $Y \subseteq \mathbb{R}^2$. Si l'on substitue à l'ensemble des boules B incluses dans Y le dôme \hat{B} , on obtient la forme de \mathbb{R}^3 :

$$\hat{Y} = \bigcup_{B \subseteq Y} \hat{B}.$$

Nous dirons qu'un dôme est *maximal* dans \hat{Y} s'il n'est inclus dans aucun autre dôme contenu dans \hat{Y} . Puisque l'inclusion entre boules est équivalente à une inclusion entre dômes, nous obtenons la propriété suivante illustrée sur la figure 9.6 [COE 07] :

LEMME **9.2** Une boule B est maximale dans Y si et seulement si son dôme \hat{B} est maximal dans \hat{Y} .

Figure 9.6. Boules incluses dans une forme et dômes associés.

Dans le cas particulier où Y est une union finie de boules ouvertes, nous réexprimons la condition de maximalité d'un dôme en terme de contact de ce dernier avec la frontière de \hat{Y} . Pour cela, remarquons que, au dessus du plan z = 0, la frontière de \hat{Y} coïncide avec l'enveloppe supérieure des paraboloïdes associés aux boules B contenues dans Y. Cette enveloppe a pour équation z = h(x, y) avec

$$h(x,y) = \max_{B \subset Y} h_B(x,y).$$

Une boule est maximale si et seulemement si son dôme touche l'enveloppe supérieure des paraboloïdes [COE 07]. Formellement :

LEMME **9.3 (Caractérisation par paraboloïdes)** Soit $Y \subseteq \mathbb{R}^2$ une union finie de boules ouvertes. Soit B, une boule ouverte de \mathbb{R}^2 . Alors :

B maximale dans
$$Y \iff \exists (x,y) \in B, h_B(x,y) = h(x,y)$$

Démonstration : Pour le sens direct, si Y est une union finie de boules ouvertes, alors l'axe médian de Y coïncide avec son squelette. En particulier, la frontière de toute boule maximale B de Y touche la frontière de Y en au moins deux points distincts q_0 et q_1 . Considérons à présent une autre boule maximale B' et montrons que, pour tout point (x, y) du segment $[q_0q_1]$, nous avons $h_B(x, y) \ge h_{B'}(x, y)$. Pour cela, introduisons

$$H = \{ (x, y) \in \mathbb{R}^2 \mid h_B(x, y) \ge h_{B'}(x, y) \}.$$

Il est facile de vérifier que H est un demi-plan fermé. Les deux points $q_0 = (x_0, y_0)$ et $q_1 = (x_1, y_1)$ se trouvent sur la frontière de B et à l'extérieur de B'. Par conséquent, $h_B(x_0, y_0) = 0 \ge 0 = h_{B'}(x_0, y_0)$ et $h_B(x_1, y_1) = 0 \ge 0 = h_{B'}(x_1, y_1)$. Autrement dit, q_0 et q_1 appartiennent tous les deux à H. Comme H est convexe, on en déduit que la totalité du segment $[q_0q_1]$ appartient à H et pour tout point (x, y) de ce segment, $h_B(x, y) \ge h_{B'}(x, y)$. Mais, comme B' a été choisie quelconque, pour tout point de ce segment, $h_B(x, y) = h(x, y)$. Puisque q_0 et q_1 sont distincts, l'intérieur de ce segment a une intersection non vide avec B, et on en déduit le sens direct de l'équivalence.

Réciproquement, supposons qu'il existe un point $(x, y) \in B$ tel que $h_B(x, y) = h(x, y)$. Alors, le dôme associé à B est maximal dans \hat{Y} et, d'après le Lemme 9.2, la boule B est maximale dans Y.

Considérons à présent une forme discrète $X \subseteq \mathbb{Z}^2$ et notons $Y \subseteq \mathbb{R}^2$ la forme continue obtenue en remplaçant les boules strictes euclidiennes contenues dans X par des boules ouvertes de même centre et de même rayon (voir figure 9.7). Notons B(P) la plus grande boule ouverte centrée en P et contenue dans Y. D'après le lemme précédent, l'ensemble suivant

$$AM_0(Y) = \{ P \in \mathbb{Z}^2 \mid \exists (x, y) \in X, h_{B(P)}(x, y) = h(x, y) \},\$$

forme un sous-ensemble de l'axe médian de Y. Notons cependant que ce sousensemble n'est pas forcément inclus dans l'axe médian discret de X. En effet, une boule ouverte peut être maximale dans Y sans pour autant que la boule stricte euclidienne de même centre et de même rayon le soit dans X (voir figure 9.7 à gauche). Ceci nous conduit à introduire l'*axe médian réduit discret* de X comme la restriction de l'ensemble précédent aux points de l'axe médian discret de X, AMDR(X) = $AM_0(Y) \cap AM_{d_E}(X)$. Il a été montré que l'axe médian réduit discret permet de reconstruire sans perte la forme discrète.

Figure 9.7. De gauche à droite, une forme discrète X et sa transformée en distance euclidienne ; les 5 centres des boules dont le dôme touche l'enveloppe supérieure des paraboloïdes, dessinée à droite ; l'axe médian réduit discret est formé du seul point central encerclé ; forme continue Y et enveloppe supérieure des paraboloïdes bordant la forme \hat{Y} .

9.5.2. Algorithme séparable et linéaire

Nous voyons à présent comment calculer l'axe médian réduit d'une forme discrète $X \subseteq [1, m]^2$. L'algorithme décrit est *séparable* car il procède dimension par dimension et est donc facilement généralisable aux grilles anisotropes et aux dimensions supérieures. De plus, il a la propriété d'être linéaire au nombre de points de la grille discrète. L'algorithme procède en trois étapes. Tout d'abord, nous calculons la transformée en distance euclidienne. Après cette étape, nous disposons d'une image $f : [1, m]^2 \to \mathbb{Z}$ mémorisant, en chaque point discret (x, y), le carré de sa distance euclidienne au complémentaire de X. Puis, nous calculons l'image $h : [1, m]^2 \to \mathbb{Z}$ définie par

$$h(x,y) = \max_{1 \le i,j \le m} \{f(i,j) - (x-i)^2 - (y-j)^2\}.$$
(9.2)

Avec les notations du paragraphe précédent, ceci revient à calculer, en chaque point discret (x, y), l'altitude de l'enveloppe supérieure des paraboloïdes associés aux boules B contenues dans la forme Y. Nous observons une grande similarité entre l'équation (9.1) utilisée pour la reconstruction et l'équation (9.2). Dans les deux cas, l'image h peut se calculer en utilisant l'algorithme séparable en $O(m^2)$ présenté dans le chapitre 5 (paragraphe 5.4.2). Néanmoins, nous marquons à présent,

pour chaque point (x, y), les centres P des boules B(P) dont le dôme passe par le point (x, y, h(x, y)). A l'issue de cette étape, les points marqués forment l'ensemble $AM_0(Y)$ défini dans la section précédente. Une dernière étape est encore nécessaire pour éliminer de l'ensemble précédent les points ne faisant pas partie de l'axe médian discret, comme illustré figure 9.7.

Figure 9.8. Une illustration de la différence entre l'ensemble S et l'axe médian discret. A gauche : les segments en pointillé représentent les boules euclidiennes 1D associées à $S = \{\hat{D}, \hat{E}\}$ alors que les segments en traits pleins représentent les boules discrètes 1D. A droite : illustration du processus de filtrage permettant de ne conserver que les boules discrètes 1D maximales.

Pour passer de l'ensemble $AM_0(Y)$ à l'axe médian discret réduit AMDR(X), un processus mono-dimensionnel, dimension par dimension, peut-être donné. A l'issue du calcul de $AM_0(Y)$, nous avons un ensemble de disques 1D, c'est-à-dire un ensemble de segments à coordonnées non entières. Sur la figure, si $\{\hat{D}, \hat{E}\}$ forme l'ensemble des dômes contribuant à l'enveloppe supérieure des paraboles, seul le centre de *D* appartient à l'axe médian discret de la forme 1D. Un processus très simple peut être ajouté à l'algorithme 9.3 pour effectuer le filtrage des segments. La preuve de l'exactitude de l'algorithme précédent est donnée dans [COE 07].

A l'issue de ce processus, nous obtenons donc un sous-ensemble de l'axe médian discret, tout en maintenant la reconstruction de la forme.

9.5.3. Exemples

Les figures 9.9 et 9.10 présentent quelques résultats en dimensions 2 et 3.

Figure 9.9. *Extraction de l'AMD en dimension 2 : la première ligne présente les objets discrets, la seconde présente les centres de boules du AMD (pixels en noir).*

Figure 9.10. AMD en dimension 3 : la première ligne présente les objets discrets, la seconde ligne présente les centres des boules de l'AMD.

9.6. Pour aller plus loin

Dans ce chapitre, nous avons défini l'axe médian et présenté plusieurs procédés de contruction pour les formes discrètes. L'ingrédient essentiel est le calcul de la transformée en distance, qui associe à chaque point de la grille discrète, sa distance au complémentaire de la forme. Notons qu'il existe d'autres catégories d'approches utilisant en entrée, non pas une forme discrète $X \subseteq \mathbb{Z}^n$, mais un nuage de points $S \subseteq \mathbb{R}^n$, échantillonnant la frontière d'une forme continue Y. Le calcul de la transformée en distance est alors remplacé par le calcul du graphe de Voronoï des points S, duquel est extrait une approximation de l'axe médian de Y [ATT 07].

Un défaut bien connu de l'axe médian est son manque de stabilité, qui le rend délicat à approcher pour les formes continues. En effet, une petite perturbation de la forme pour la distance de HAUSDORFF peut entraîner des modifications importantes de l'axe médian. L'effet typique est l'apparition et la disparition de branches en périphérie de l'axe médian, la partie centrale restant par ailleurs stable. Cette observation est consistante avec la propriété de semi-continuité que possède l'axe médian [MAT 88, Chapitre 11]. Une conséquence de ce résultat est que l'axe médian de X doit être filtré avant de pouvoir être utilisé comme approximation de l'axe médian de Y. Il a été montré récemment que plusieurs sous-ensembles de l'axe médian sont stables [CHA 04, CHA 06].

En revenant dans un contexte discret où l'on souhaite une reconstruction exacte de la forme initiale, nous avons insisté sur le fait que l'axe médian discret n'était, bien souvent, pas minimal en nombre de boules. Considérons l'exemple donné dans la figure 9.11 dont les valeurs correspondent à la transformée en distance euclidienne; les points des valeurs entourées dans la figure de gauche correspondent à l'axe médian discret. Or, dans la figure de droite, le sous-ensemble considéré permet toujours de reconstruire la forme. Les boules supprimés correspondent à des boules maximales couvertes par une union de boules. L'axe médian discret minimal peut donc être défini comme étant un sous-ensemble de l'axe médian discret possédant un nombre minimal de disque tout en permettant une reconstruction exacte. Formellement, le problème d'extraction d'un axe médian minimal est NP-complet dans le cas général pour les distances usuelles (voir [AUP 88] pour d_{∞}). Certains travaux cherchent alors à construire des heuristiques permettant de réduire l'axe médian discret [BOR 97, NIL 97].

1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	4	4	4	4	4	1	1	4	4	4	4	4	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 9.11. Axe médian discret pour la distance euclidienne (à gauche) et sous-ensemble de l'axe médian permettant une reconstruction exacte (à droite).

Les chapitres 15 et 18 présentons deux applications de la représentation d'un objet discret par axe médian, pour la transmission progressive et pour la visualisation.

9.7. Bibliographie

- [AME 98] AMENTA N., BERN M., EPPSTEIN D., « The crust and the beta-skeleton : combinatorial curve reconstruction », *Graphical Models and Image Processing*, vol. 60, p. 125–135, 1998.
- [AME 99] AMENTA N., BERN M., « Surface reconstruction by Voronoi filtering », Discrete Comput. Geom., vol. 22, p. 481–504, 1999.

- [ARC 88] ARCELLI C., SANNITI DI BAJA G., « Finding local maxima in a pseudo-euclidean distance transform », Computer Vision, Graphics and Image Processing, vol. 43, p. 361-367, 1988.
- [ATT 07] ATTALI D., BOISSONNAT J.-D., EDELSBRUNNER H., « Stability and Computation of the medial axis — a State-of-the-Art Report », MÖLLER T., HAMANN B., RUSSELL B., Eds., Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, Springer-Verlag, 2007.
- [AUP 88] AUPPERLE L. J., CONN H. E., KEIL J. M., O'ROURKE J., « Covering orthogonal polygons with squares », Proceedings of the 26th Annual Allerton Conf. Comm. Control Comput., p. 97–106, 1988.
- [BLU 67] BLUM H., « A transformation for extracting descriptors of shape », Models for the Perception of Speech and Visual Forms, MIT Press, p. 362–380, 1967.
- [BOR 91] BORGEFORS G., RAGNEMALM I., SANNITI DI BAJA G., «The Euclidean Distance Transform : finding the local maxima and reconstructing the shape », 7th Scandinavian Conf. on Image Analysis, vol. 2, Aalborg, Denmark, p. 974-981, 1991.
- [BOR 97] BORGEFORS G., NYSTRÖM I., « Efficient shape representation by minimizing the set of centers of maximal discs/spheres », *Pattern Recognition Letters*, vol. 18, p. 465–472, 1997.
- [CHA 04] CHAZAL F., LIEUTIER A., « Stability and homotopy of a subset of the medial axis », Proc. 9th ACM Sympos. Solid Modeling Appl., 2004.
- [CHA 06] CHAZAL F., COHEN-STEINER D., LIEUTIER A., « A sampling theory for compact sets in Euclidean Space », Proc. 22nd Ann. Sympos. Comput. Geom., p. 319–336, 2006.
- [CHE 93] CHEN C. H., PAU L. F., WANG P. S., Eds., Segmentation tools in Mathematical Morphology, World Scientific, 1993.
- [COE 07] COEURJOLLY D., MONTANVERT A., « Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension », *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 29, n°3, p. 437-448, March 2007.
- [DEY 03] DEY T. K., GIESEN J., GOSWAMI S., « Shape segmentation and matching with flow discretization », ET AL. F. D., Ed., Proc. Workshop Alg. Data Structures, p. 25–36, 2003.
- [HIS 02] HISADA M., BELYAEV A. G., KUNII T. L., «A Skeleton-based Approach for Detection of Perceptually Salient Features on Polygonal Surfaces », *Computer Graphics Forum*, vol. 21, p. 689–700, 2002.
- [HOF 89] HOFFMANN C., Geometric and Solid Modeling, Morgan-Kaufmann, San Mateo, CA, 1989.
- [LAT 91] LATOMBE J.-C., Robot Motion Planning, Kluwer Academic Publishers, Boston, 1991.
- [LIE 03] LIEUTIER A., « Any open bounded subset of \mathbb{R}^n has the same homotopy type as its medial axis », *Proc. 8th ACM Sympos. Solid Modeling Appl.*, ACM Press, p. 65–75, 2003.

- [MAT 88] MATHERON G., « Examples of topological properties of skeletons », SERRA J., Ed., Image Analysis and Mathematical Morphology, Volume 2 : Theoretical Advances, p. 217– 238, Academic Press, London, 1988.
- [NIL 97] NILSSON F., DANIELSSON P.-E., «Finding the Minimal Set of Maximum Disks for Binary Objects », *Graphical models and image processing*, vol. 59, n°1, p. 55–60, January 1997.
- [OGN 94] OGNIEWICZ R., « A multiscale MAT from Voronoi Diagrams : the Skeleton-Space and its Aplication to Shape Description and Decomposition », ARCELLI C. et al., Eds., Aspects of Visual Form Processing, World Scientific, Singapore, p. 430–439, 1994.
- [PRI 97] PRICE M. A., ARMSTRONG C. G., "Hexahedral Mesh Generation by Medial Surface Subdivision : Part II. Solids with Flat and Concave Edges", Internat. J. Numerical Methods Engineering, 1997.
- [REM 01] REMY E., THIEL E., « Medial Axis for Chamfer Distances : computing Look-Up Tables and Neighbourhoods in 2D or 3D », *Pattern Recognition Letters*, vol. 23, p. 649-661, 2001.
- [REM 05] REMY E., THIEL E., « Exact Medial Axis with Euclidean Distance », Image and Vision Computing, vol. 23, n°2, p. 167-175, 2005.
- [ROS 66] ROSENFELD A., PFALTZ J. L., « Sequential Operations in Digital Picture Processing », *Journal of the ACM*, vol. 13, n°4, p. 471–494, October 1966.
- [SAI 94] SAITO T., TORIWAKI J.-I., « Reverse Distance Transformation and Skeletons Based upon the Euclidean Metric for n-Dimensionnal Digital Pictures », *IECE Trans. Inf. & Syst.*, vol. E77-D, n°9, p. 1005–1016, September 1994.
- [SHE 96] SHERBROOKE E., PATRIKALAKIS N. M., WOLTER F.-E., « Differential and Topological Properties of Medial Axis Transforms », *Graphical Models and Image Processing*, vol. 58, p. 574–592, 1996.
- [SHE 99] SHEFFER A., ETZION M., RAPPOPORT A., BERCOVIER M., «Hexahedral mesh generation using the embedded Voronoi graph », *Engineering Comput.*, vol. 15, p. 248– 262, 1999.
- [SON 99] SONKA M., HLAVAC V., BOYLE R., Image Processing, Analysis and Machine Vision, PWS Publishing, Pacific Grove, second édition, 1999.