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ABSTRACT

Using inclusion-exclusion, we can write the indicator function of a union of
finitely many balls as an alternating sum of indicator functions of common
intersections of balls. We exhibit abstract simplicial complexes that corre-
spond to minimal inclusion-exclusion formulas. They include the dual com-

plex, as defined in [2], and are characterized by the independence of their
simplices and by geometric realizations with the same underlying space as

the dual complex.
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1. INTRODUCTION

In this paper, we study inclusion-exclusion formulas for unions
of finitely many balls inR¢, generalizing previous results that de-
rive such formulas from Delaunay triangulations and dual com-
plexes.

Motivation. It is common in biochemistry to identify a molecule
with the portion of space it occupies. This portion is sometimes

*Partially supported by the IST Program of the EU under Contract
IST-2002-506766 (Aim@Shape)

TPartiaIIy supported by NSF under grant CCR-00-86013 (Bio-
Geometry).

Permission to make digital or hard copies of all or part of this work for

Herbert EdelsbrunnerT
Department of Computer Science
Duke University, Durham
Raindrop Geomagic, RTP, NC, USA

edels@cs.duke.edu

referred to as thepace-filling diagramand its simplest and most
common form is a union of balls iR?, each ball representing an
atom of the molecule. The volume and surface area of this union
are fundamental concepts that relate to physical forces acting on
the molecules. We refer to [3] for a recent survey that describes this
connection and also discusses derivatives of the volume and surface
area, which are needed in simulating the motion of molecules.
Consider a finite set of balls IR* and let us focus on the volume
of the union. Generally, there are many inclusion-exclusion formu-
las that give the correct volume, even if we limit our attention to
minimal formulas. The starting point of the work reported in this
paper is the idea that this ambiguity could be useful in maintaining
a formula for a moving set of balls. If we understand how long a
formula remains valid, we can save time by delaying any changes
until they become necessary. As a first step towards such an un-
derstanding, we study the family of minimal inclusion-exclusion
formulas for a given set of balls.

Prior work.  The principle of inclusion-exclusion is perhaps the
most natural approach to measuring a union of balls. Lefirige

a finite set of balls, the volume of the union is the alternating sum
of volumes of intersections:

vol| J B > () ol () X

0#XCB
Writing n for the number of balls ilB, we have2™ — 1 terms, each
plus or minus the volume of the intersection of at magballs.
It seems the formula is only useful if all se¥ with non-empty
common intersection are small. More than a quarter century ago,
Kratky [6] pointed out that even if this is not the case, one can sub-
stitute lower-order for higher-order terms and thus reduce the com-
plexity of the formula. The software of Scheraga and collaborators
[8] is based on this observation, but it is sometimes difficult to do
the reduction correctly. In 1992, Naiman and Wynn [7] proved that
Equation (1) is correct even if we limit the sum to saighat cor-
respond to simplices in the weighted Delaunay triangulatioB.of
By definition, this is the dual of the weighted Voronoi diagram of
the balls, also known as the power diagram and the Dirichlet tessel-
lation [1]. In the geometry literature, this dual is also known as the
regular triangulation and the coherent triangulatiof oB [4]. In

@)

personal or classroom use is granted without fee provided that copies areagreement with Kratky, this result implies thatid we only need

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SoCG'05, June 6-8, 2005, Pisa, Italy

Copyright 2005 ACM 1-58113-991-8/05/000655.00.

setsX of cardinality at most four. Taking all such sets would lead to
an incorrect formula, and Naiman and Wynn'’s result is a recipe for
selecting sets that give a correct formula. In 1995, Edelsbrunner [2]
further reduced the formula by proving that Equation (1) remains
correct if we limit the sum to simplices in the dual complex, which



is a subcomplex of the weighted Delaunay triangulatiofoBe- By assumption of general position, we have an open set of points
sides giving a shorter formula, the terms obtained from the dual for eachy C a. In R?, there are only three types of independent

complex consist of balls that intersect in a unique pattern, which simplices, one each for one, two, and three disks, as shown in Fig-
allows a simple implementation without case analysis [5]. ure 2. Four disks cannot be independent because the four bounding

Results. We refer to the specific intersection pattern exhibited

by the balls in the dual complex formula as independent, a term

whose technical definition will be given shortly. Our first result

generalizes this formula to a family of formulas whose terms ex-

hibit the same pattern. Specificallf, K is an abstract simplicial

complex whose simplices are independent sets of balls and whose

canonical geometric realization has the same boundary complex

and underlying space as the dual complex then the corresponding Figure 2: From left to right: an independent simplex of dimen-

inclusion-exclusion formula is correcto prove that thisis a proper  sjonk = 0, 1, 2.

generalization, we show in Figure 1 that even already for four disks

in the plane we can have more than one such formula. Our sec-circles decompose the plane into at most 14 regions but we need 16,

ond result states th#te inclusion-exclusion formulas in the family  one each for the* subsets. Similarly, iiR? we haved + 1 types

specified in our first result are minimal and exhaust all minimal  of independent simplices. For< k < d — 1, we can construct an

formulas that correspond to simplicial complexes. independenk-simplex inR? from one inR*, by drawing the latter
in ak-dimensional plane and replacing edelimensional ball by
ad-dimensional ball, using the same center and radiuskFerd,

a d
we get an independedtsimplex by adding a single ball to an inde-
pendentd — 1)-simplex. Thel (d — 1)-spheres bounding the balls

‘ b of the (d — 1)-simplex intersect in two points, and the extra ball
" ¢ contains one of the two points in its interior and does not contain
the other point. If3 C « is a non-empty subset, we cdllaface
a d .
k of « and« a cofaceof 8. Clearly, every face of an independent
' E simplex is independent.
b c

General position.  We think of R? as the subspace @¢+!
spanned by the firsi coordinate axes. For eachdimensional
ball b; with centerz; € R? and radius~; > 0, we construct the

Figure 1. Four disks that permit two correct, minimal .
correspondinghost sphere

inclusion-exclusion formulas. The upper complex on the right

is the dual complex of the disks and corresponds to the formula si = {yeR™ | |ly—zl®—r?=0},
a+b+c+d—ab—ad—bc—bd— cd+ abd+ bed, in which we o ) . ) i
write o for the area of disk a, ab for the area of the intersection which is ad-sphere irR*** . Using this concept, we can now define
of a and b, etc. To get the formula of the lower complex, we ~ What exactly we mean by a set of balls to beggmeral position
substitute —ac + abc + acd for —bd + abd + bed. namely that the common intersection of aay- 1 ghost spheres

is either empty or a sphere of dimensiénr- k. We note that for
. . — 0 < k < d, thisis equivalent to the condition we mentioned earlier:

Outline. Section 2 pres_ents definitions ar_1d the formal statements all radii are positive and the common intersection of any- 1
of our two results. Sectl_on 3 proves the fll_‘St result and Section 4 bounding spheres is either empty or a sphere of dimeniside—1.
proves the second. Section 5 concludes this paper. Fork > d we get new conditions. We need some definitions before

we can explain them in terms of concepts intrinsi@®fo
2. STATEMENT OF RESULTS Call mi(z) = ||z — zi||> — r? the power distanceof the point

In this paper, a simplex may be abstract (a collection of balls) = € R? from b; and note thab; = m; ' (—o0, 0] and the zero-set

or geometric (the convex hull of affinely independent points). We Of m; is the(d — 1)-sphere bounding;. Using the power distance,
use both interpretations interchangeably and introduce notation thatwe decomposg) B into convex cells, one for each ball. Specifi-
does not distinguish between them. cally, the cell ofb; consists of all points € b; with m;(z) < 7 (z)

for all b; € B. Itis not difficult to see that the cell @f; is the in-
Independent simplices. Let B be a finite set of closed balls in ~ tersection oft; with a convex polyhedron, keeping in mind that
R, Throughout this paper, we assume that the balls are in generalthis polyhedron or its intersection with may be empty. To de-
position, which includes that every ball has positive radius and the SCribe the relation between this cell and the ghost sphefig, ufe
common intersection of arfy+ 1 bounding spheres is either empty Qeflpegi(y) = |ly — zlI” + m:i(x), wherex is the orthogonal pro-
or a sphere of dimensiah— k — 1. In particular, this prevents the ~ Jection ofy € R*! toR?. The ghost sphere itself is the zero-set,
common intersection degenerates to a single point. aBstract si = o; '(0). For agiven pointz € b;, definey;(z) € R™™
simplexis a non-empty subset C B and itsdimensioris one less ~ aboveR? such that|y: () — z||* + m;(2) = 0; itis the point on
than its cardinalitylim o = card a— 1. A k-simplexis an abstract  the upper hemi-sphere of whose orthogonal projection @& is

simplex of dimensiot. Itis independenif for every subset C a, x. The conditizon forz to belong] to the cell ob; now translates
includingy = 0, there is a point that belongs to all balls+rbut to [lyi(z) — z||” > |ly;(z) — =||” whenevery; (z) is defined. In
not to any ball not iny: words, the cell ob; is the orthogonal projection of;’s contribu-

tion to the upper envelope of the ghost spheres, as illustrated in

Nr-Ula=7 # o Figure 3.



(d — k)-sphere and intersect the arrangement with (the- 1)-
dimensional plane that passes through this point and the centers of
thek + 1 d-spheres. Within this plane, we haket 1 k-spheres
meeting in a common 0-sphere and we apply the above argument
to conclude that the correspondihgsimplex is independent. []

Simplicial complexes. An abstract simplicial complebs a collec-
tion of non-empty abstract simplicek;, that contains, with every
simplex, the faces of that simplex. B is the set of vertices then
K is a subset of the power sdt; C 27. Figure 4 illustrates the
Figure 3: Upper envelope of the ghost spheres of three indepen-  definitions. Ageometric realizatiomaps every abstract simplex to
dent disks and the corresponding decomposition of the union of
disks into convex cells.

Let us return to the cade > d of our general position assump-
tion. It says that the common intersection of dny-1 > d + 1
ghost spheres is either empty or a 0-sphere, and the latter case can
only happen it = d. Equivalently, the common intersection of the
cells decomposing the union of aky+ 1 > d + 1 balls is either
empty or a point in the interior of the union, and the latter case can
happen only it = d.

Characterizing independence. Besides for expressing our gen-
eral position assumption, ghost spheres can be used for characteriz-
ing independent simplices. This characterization will be important
in establishing the Non-nesting Lemma in Section 3, a crucial step

in the proof of our first result. Figure 4: Afinite set of disks and the canonical realization of an
abstract simplicial complex over that set. The vertices, edges,
GHOST SPHERELEMMA. A k-simplex ofk + 1 balls in general and triangles correspond to abstract simplices of dimension 0,
position is independent iff the common intersection offitg- 1 1, and 2. Take a moment to verify that all simplices are inde-
ghost spheres is a sphere of dimension k. pendent.

PROOF. All ghost spheres have their centersiifi, which im- o ) ) )
plies that the arrangement of thet- 1 d-spheres is symmetric with @ geometric simplex of the same dimension such that the intersec-

respect tR?. The number of chambers (cells of dimensiba 1) tion of the im_age_s of two abstract simplicesandj is the i_mage
in this arrangement is the same above and b&téyand indeedthe ~ 0f @ N 3, which is either empty or a face of both. In this paper,
same altogether. To prove the claim, we show that there*are the vertices are closed balls and we map every abstract simplex to
chambers iff thet + 1 ghost spheres meet in(d — k)-sphere. its canonical imagedefined as the convex hull of the centers of its
We prove one direction by counting the chambers while adding balls. We callK canonically realizablef this map is a geometric
one d-sphere at a time. Lettingo, s1, ..., sx be this sequence,  realization. We use the lettersand 3 to denote the abstract sim-
we note thats, creates two chambers, one inside and one outside. Plices as well as their images, which are geometric simplices. Sim-
When we add;, we consider its decomposition infedimensional ilarly, we use the letteK to denote the abstract simplicial complex

patches defined by the precedifigpheres. As we add the patches, &S Well as its geometric realization, which is a geometric simplicial
again one by one, each patch may or may not cut a chamber intocOmMplex. Itsunderlying spaces the set of points covered by the
two. To reach the necessay/"" chambers, we need to double the ~geometric simplices, which we denote|d§|. Thestar of an ab-
number of chambers each time we adtisphere. Thisis only pos- ~ Stractsimplexg is the set of cofaces € K, and theink of 5 is the
sible if s; is decomposed int?’ patches, the maximum possible, ~Set of simplicesy — S with a 5 5. AssumingK is geometrically
and each patch cuts a chamber into two. Using stereographic pro-réalized inR?, the link of everyk-simplex is a triangulation of the
jection, we maps; to ad-dimensional plane and its patches to the SPhere of dimensiod — k — 1 or a proper subcomplex of such a
(d-dimensional) chambers in the arrangemen 6f — 1)-spheres, ~ triangulation. We define thieoundary complesf K’ as the subset
the images of the,; N s; for 0 < i < j — 1. By induction over the of simplices in the latter category. This is also the subcomplex of
dimension, having’ such chambers implies the(d — 1)-spheres ~ Simplices contained in the boundary|éf|.
meet in a commoitd — j)-sphere. In the last step, we hayve- k
and get dd — k)-sphere common to all + 1 d-spheres. Dual and other independent complexes.Let B be a set of closed
Proving the reverse implication is easier. kif= d, we have balls and recall the decomposition lof B into convex cells de-
d + 1 d-spheres meeting in a 0-sphere, that is, a pair of points. scribed above. The nerve of this collection of cells is particularly
In a sufficiently small neighborhood of one of these two points, important for the developments reported in this paper. dial
the d-spheres behave liké-dimensional planes, decomposing the complexof B is the canonical realization of this nerve, obtained
neighborhood int@?*! orthants. Each orthant corresponds to a by mapping every: + 1 cells with non-empty intersection to the
unique subset of thé-spheres and belongs to a unique chamber in k-simplex spanned by the centers of the corresponding balls. This
the arrangement they define. It follows that the corresponding  construction is illustrated in Figure 5, where we see the dual com-
simplex is independent. K < d, we pick a point on the common  plex superimposed on the decomposition of the union into convex



cells. Itis perhaps not obvious but true that the canonical mapping
of abstract simplices defines a geometric realization of the nerve,
provided the balls irB are in general position.

L2
& -

iy

Figure 5: The dual complex of the disks in Figure 4. Its sim-
plices record the overlap pattern of the cells in the decompo-
sition of the union. In this example, the dual complex has the
same boundary complex and underlying space as the indepen-
dent complex in Figure 4 but differs from it in six edges and
twelve triangles.

Given a finite set of balls in general positid, we are primarily
interested in abstract simplicial complex&sof B that satisfy the
following three conditions:

Independence:  all simplices inK are independent;
Realizability: K is canonically realizable iR?;
Boundary: the boundary complex and underlying spacekof

are the same as those of the dual complex.

An independent complég an abstract simplicial complex that sat-

sures of the union by integrating the density functjon,R? — R:

meaSUB /IEUB,u(m) dz
[ r@tys@ar
>yt [

acK zeR4

Z (—1)dim°‘measﬂ a.

aEK

p(r)lna(z) de

Ford = 2, the edge skeleton oK is a planar graph implying
that the number of terms in the above formula is less than six times
n = card B. More generally, the number of terms is bounded from
above by some constant time&/21.

Second result: minimality. The inclusion-exclusion formula that
corresponds to an abstract simplicial compiéxC 22 gives a map
IEF : R? — Z defined by

IEFx(z) =

=0T o (2).

aEK

The formula isminimal if IEF;, # TIEFx for all proper subsets

L C K. By Theorem A, we havéEFx = 1y if K is an in-
dependent complex canonically realizableRif that satisfies the
boundary condition. Our second result states that such complexes
have minimal formulas and that they exhaust the family of com-
plexes with minimal formulas.

THEOREMB. Let B be a finite set of closed balls in general
position inR? and K C 22 an abstract simplicial complex with
IEFx = 1yp. This formula is minimal iff K is independent,

canonically realizable ii®?, and satisfies the boundary condition.

3. PROOF OF THEOREM A

In this section, we present our proof of Theorem A. Starting with

isfies the independence condition. We note that there is an alterna-a finite set of balls, we first add small balls covering the re&of

tive way to express the boundary condition, without references to
the dual complex, by comparing the boundariegoand|  B. In
particular, a simplexx belongs to the boundary complex &f iff
there is a point on the boundary [of B that belongs to all balls in

« and to no others.

First result: correct indication. The indicator functionof a
subsetd C R? is the mapl 4 : R? — {0, 1} defined by

IA(:L') = {

Given a finite set of balls ilR?, our first result states that the
inclusion-exclusion formula defined by a simplicial complex that

1
0

if z € A,
if z & A

satisfies the above three conditions gives the correct indicator func-

tion of the union.

THEOREMA. Let B be a finite set of closed balls in general
position inR? and K an independent complex that is canonically
realizable irR? and satisfies the boundary condition. Thepz =

Yaerx (DT 1n,.

Using Theorem A, we obtain formulas for the volume or other mea-

to get an infinite but discrete set, and we second use this discrete
set as the basis for a continuous set. Both steps are instrumental in
obtaining the technical results that imply Theorem A.

Induced subcomplexes. Given an abstract simplicial complex
K C 2B, asubseBy C B inducesthe subcomplexs, = K N
280 To establish our first result, we associate to each po'fnﬂRd
the subsetB, C B of balls that containc and the subcomplex
K, C K induced byB,. We have

[EFg(z) = Y (-1 "1q,(x)
aEK
— Z(_l)dima.
a€EKy

The latter sum is the Euler characteristic/6f, which we denote
asx(K;). For all pointsz ¢ (JB, K, = 0 andIEFk (z)
X(K.) = 0. To tackle the points inside the union, we recall that
the Euler characteristic of every contractible setis 1. As explained
later, such a set has the homotopy type of a point, which in the
plane includes trees and closed disks. We will show [Aa{| is
contractible, for every point € |J B, which will then imply The-
orem A.

The union of the balls iB,, is star-convex, which implies that
J B. is contractible. In spite of the fact that the underlying space



of the subcompleX,, induced byB,. is not necessarily star-convex,
we will be able to prove thgi | is also contractible. Before em-

barking on this proof, we introduce the discrete and continuous sets

of balls. Using the continuous set, we will find a set betwidén|
and|J B, which we will show is star-convex and of the same ho-
motopy type a$K|.

From finite to discrete sets of balls. A simplicial complex is
locally finiteif the star of every vertex is finite. We extend the finite
set of ballsB to a discrete seB = B U B.. Simultaneously,
we construct a locally finite independent complexD K whose
vertices are the balls i and whose underlying spacel€. The
construction depends on a positive numbehe radius of the balls
in B. added toB. We require that3 coversR? while the center
of every ball inB. lies outside all other balls i, as illustrated in
Figure 6. Choosing > 0 sufficiently small, we construdB. one

Figure 6: Extension of the independent complex in Figure 4 by
adding disks of radiuse. The rectangular frame delimits the
portion of the configuration reused in Figure 7.

ball at a time, picking the center outside all previous balls, uBtil
coversR?. Assuming the balls itB are in general position, it is
clear that we can construé such that its balls are also in general
position. To see what is sufficiently small, we consider the cells
in the decomposition of ) B. As we add balls of radius, these

of o = Zf:o Aioi. A pointy belongs to the common intersection
of thes; iff o:(y) = 0, for all ¢, which implies

k
ﬂsi C s.
i=0

A convex combinatioh of « is an affine combination for which
all \; are non-negative. If a point belongs to all balls inx then
mi(z) < 0, for all 7, which impliesw(z) < 0. Furthermore, if
m(z) < 0 thenm;(z) < 0 for at least one index, which implies
thatz belongs to at least one ball in In set notation,

ﬂa C b C Ua. 3

Letting a € K be the simplex whose interior contains the point
z € R?, we writeb, for the (unique) convex combination of balls

in a whose center ig. Incidentally, the coefficients that define
b. in terms of the balls imv are the same as the ones that define
z in terms of the centers of the balls in Relation (2) is useful
when we consider a line and the balls whose centers lie on

the line. These balls intersect the line in intervals. It turns out
that as we move the center monotonically along the line, the left
endpoint also moves monotonically and so does the right endpoint.
It is convenient to prove this for the extensidhof K for which
there are balls for all points along the line. As usual, we assume the
balls in B are in general position.

@)

NON-NESTINGLEMMA. For any two points: # y in R%, the
two ballsb, andb, are either disjoint or independent.

PrROOF Consider first the case in whichandy are points of
a commond-simplexa in K. Sincea is independent, the ghost
spheres ofy intersect in a common 0-sphere. By Relation (2), the
ghost spheres @f, andb, pass through this 0-sphere and thus meet
ina(d — 1)-sphere. It follows that, andb, are independent.

If z andy do not belong to a commatfrsimplex, there is a point
z on the line segment connectingandy that lies on &d — 1)-
simplex. The number ofd — 1)-simplices separating from z is
strictly smaller than the number separatingrom y, and similar
for z andy. We can therefore use induction to show thaandb.
as well ag. andb, are either disjoint or independent. Sincées
betweenr andy, it follows that alsd,. andb,, are either disjoint or

cells give up territory to the new balls, but not more than what is independent. [J

covered by the new balls. By shrinkimgwe can make the loss of

territory as narrow as we like. By assumption of general position,
we can therefore maintain the non-empty common intersection of |ntermediate set of centers.

any collection of cells in the decomposition|dfB. It follows that
the dual complex o3 is a subcomplex of the dual complex Bt
The boundary complex of the dual complex Bfis the same as
that of K. We can therefore construéf equal to inside and
equal to the dual complex @ outside that boundary, as illustrated
in Figure 6. We finally note the choice of balls implies tHstis
locally finite.

From discrete to continuous sets of balls. An abstract simplex
is a finite set of ballsqe = {bo, b1, . ..,br}. We extendx to an in-
finite set by considering convex combinations of ballsiirRecall
thatr; : R — R maps each point € R? to the power distance
from b; and thath; = 7; *(—o0, 0]. An affine combinatiorf o is
aballb = 7~ (—o0, 0] for which there are real numbeks, sum-
ming to 1, such thatr = Y% \;m. Recall also that the ghost
spheres; of b; is the zero-set of the map : R?*! — R defined
by oi(y) = ||y — «||*> + mi(x), wherez is the orthogonal projec-
tion of y ontoR®. Similarly, the ghost sphereof b is the zero-set

For a pointz € R%, we write
B, C B for the set of balls that contain and K, C K for the
subcomplex induced hig,.. We prove thatK | is contractible by
showing it has the same homotopy type as

Z, = {zeR'|zeb.},

which we later prove is star-convex. Letbe the simplex whose
interior contains the point € R?. By Relation (3),z € Z, if
all balls in« containz. Similarly, z ¢ Z, if none of the balls
in « containsz. As illustrated in Figure 7, the first property im-
plies |K;| € Z,. Let L, be the subcomplex ok induced by
B — B,. Each vertex ofK is either inK, orin L,. It follows
that each abstract simplexthat is in neither induced subcomplex
is the union of its largest facesx € K, andar € L,. The
corresponding geometric construction writeas the union of line
segmentgq connecting pointg € ax with pointsq € ar. We
note thath, containsz andb, does not contaiz. The boundary
spheres ob,, andb, meet in a(d — 2)-sphere which is also con-
tained in the bounding sphere of every ball along the line segment



Figure 7: The point z is contained in four disks, which induce
the dark subcomplex K., consisting of two triangles and their
faces. The other disks induce the light subcomplek... We get
7. by adding initial portions of the line segments covering the
in-between simplices to the underlying space ok ..

betweerp andg. As we move fronp to ¢, the ball shrinks on the
side ofz, which implies that there is a unique poinbn pg such
thatz € b, for all z betweenp andy, includingy, andxz & b,
for all z betweeny andq, excludingy. In other words,Z,. can be
written as| K| union all line segmentgy as described. These line
segments can be shrunk continuously towafds|. Formally, we
definey(\) = (1 — X))y + Ap, for 0 < X < 1, and we consider the
setZ,(\) defined agKk | union all line segmentgy(\). We have
Z.(0) = Z, andZ, (1) = |K.|. We thus constructed a deforma-
tion retraction that takeg, to | K|, proving that the two have the
same homotopy type.

HOMOTOPYTYPELEMMA. |K,| ~ Z,.

As mentioned earlier, a contractible set has the homotopy type
of a point. By the above lemmi, | is contractible iffZ, is con-
tractible. We prove the latter by showing thdt is the union of
line segments emanating from a common endpoint. This implies
that Z,. is contractible because we can again exhibit a deformation
retraction by shrinking the line segments, this time toward their
common endpoint.

STAR-CONVEXITY LEMMA. Z, is star-convex.

PROOF. Observing that: € Z,, we show that any line that
passes through intersectsZ, in a single line segment. To reach
a contradiction, assume there are poigptand z on such a line
throughz such thatz lies strictly betweenr andy andx € b,
butz ¢ b.. Thenb. C b,, which contradicts the Non-nesting
Lemma. O

Itis not too difficult to show that the bounda[yBL is piecewise
linear, as suggested by Figure 7. In other woisis a star-convex
polytope.

Finale. We finally state and prove the crucial technical result that
implies Theorem A.

CONTRACTIBILITY LEMMA. Let B be afinite set of closed balls
in general position iiR?. For every point: € | B, the underlying
space of the subcompléx, induced by the balls that containis
contractible.

PROOF We first establish the result for pointsin the interior
of UB. We may assume that > 0 is sufficiently small such
that none of the balls ilB. containsz. Hence,B, = B, and
K, = K,. By the Homotopy Type LemmdkX | and Z, have
the same homotopy type, and by the Star-convexity Lemifa,
is star-convex and therefore contractible. It follows that| is
contractible. By assumption of general position, every poion
the boundary has a poiptin the interior of(J B that is contained
in the same balls oB asz. Therefore, K, = K, and the claim
follows by the first argument. [

As mentioned earlier, the contractibility P, | impliesIEF i (z) =
X(K.) = 1for all pointsz € |J B. Theorem A follows.

4. PROOF OF THEOREM B

In this section, we present a proof of Theorem B. We begin by
establishing Equation (4) as our main technical tool.

Witness points. Let B be a finite set of closed balls in general
position inR?, as usual. Le8 C B be an independert-simplex
andl(p) the (d — k — 1)-sphere common to th@l — 1)-spheres
bounding the balls i#. By assumption of general position, almost
all points ofl(3) do not lie on any other bounding — 1)-sphere,
and we lety € I(3) be one such point. We considzt*! points
x~ neary, one for each subset C 3, as illustrated in Figure 8.
We require that the points witness the independencg, diiat is,
zy € v —U(B —~) for all v, and that every other ball iB — 3
either contains all of the points or none of them. Given a collection
of independent simplices C 27, we study the alternating sum

X = S (=D)TIIEFL(a,)
vCB
— Z(_l)dim'}/ Z(_l)dimalﬂa(mw)
vCB ael
= S (1) w(a),
a€L
wherers(a) = 3. ,(=1)"™ 71, (z,) anddim ) = —1. If

() « does not contaity then it contains none of the points, and
we havelpn,(z,) = 0 for all 4. Otherwise, there is a unique
largest subset C 3 contained ina, namelyé = 8N «, and
we havez, € Naiff § C v C B. The set of suchy has the
structure of an abstract simplex and we haya) = 0 unless§ =
3. Equivalently,x(«) = 0 unless3 C « in which cases(a)
(=1)%™mP1n , (z5). LettingLs C L be the set of simplices that
containg, we get

= (-)"IIEFL, (y), @)
because:g andy are contained in the same balls. We are interested
in two special cases. The first case is characterizedby, being
constant in a neighborhood gf By the choice of points:, we
havelEF (z,) = IEF . (y) for all 4. Plugging the common value
into the definition, we gef = 0, and using Equation (4), we get
IEFr,(y) = 0. We state this result in words, letting be an
independent simplex angl € I(3) a point not on the bounding
sphere of any ball ilB — 3, as before.

X

EVEN COROLLARY. If IEF;, is constant in a neighborhood of
y then the number of cofaces € L of 8 with y € [ « that have

even dimension is the same as the number of such cofaces that have

odd dimension.



The name of the claim is motivated by the weaker implication that
the number of cofaces of 3 with y € ()« is even. The second
special case is characterized®8F 1, (z,) = IEF 1 (y) for all v #

¢ andIEF . (zg) = IEF.(y) — 1. This arises, for example, when
the inclusion-exclusion formula af is the indicator function of

U B andy lies on the boundary of the union. Plugging the values
into the definition, we gex = 1, and using Equation (4), we get
IEF, (y) = +1. We state a weaker implication in words.

ODD COROLLARY. If IEF, is constant aroung, except in the
orthant ofzy where itis one less, then the number of cofages L
of B withy € N «is odd.

Redundant subsets. A subsetZ of an abstract simplicial complex
K isredundantf IEFx = IEF x_ 1. Equivalently,

Z(_l)dimalﬂa

a€cL

IEF.

vanishes everywhere. We use the Even Corollary to derive struc-
tural properties of redundant subsets.

REDUNDANT SUBSETLEMMA. Let B be a finite set of closed
balls in general position iR?, K an independent complex ova,
and L a redundant subset .

(i) If L contains &-simplex, with k£ < d, thenL contains at
least one proper cofaece D .

(i) If L contains ad — 1)-simplex3, then L contains twod-
simplices whose canonical image&ifintersect in the canon-
ical image off3.

(iii) If L contains al-simplexc, thenL contains alli+1 (d—1)-
faces ofa.

PrROOF To get (i), lety € I(B). SincelEF vanishes every-
where, and therefore also in a neighborhoog,ahe Even Corol-
lary implies thatL contains an even number of cofaeesf 3 with
y € [ a. One such cofaces j$ itself, which implies the number
is at least two and therefore includes at least one proper coface.

To get (ii), observe that(3) consists of two pointsy and z.
Applying the above argument tpwe obtain ad-simplexa D 8
in L. Sinced — 1 andd are the only dimensions to consider, and
for trivial reasons3 is the only(d — 1)-simplex that containg,
the d-simplex« is unique. Sincev is independent, the extra ball
in . containsy and does not contain. Symmetrically, we get a
uniqued-simplex whose extra ball contairsand does not contain
y. The centers of the two extra balls lie on opposite sides of the
(d — 1)-dimensional plane spanned By It follows that the twad-
simplices lie on opposite sides of thé— 1)-simplex, as illustrated
in Figure 8 on the right.

To get (iii), we consider the common intersection of the- 1
balls ina. Sincec is independent, this intersection has the shape
of ad-simplex with spherical faces. For each ofdts- 1 vertices
y, we consider théd — 1)-face of a with y € I(3). The Even
Corollary implies thatl contains at least one coface @f besides
«, whose common intersection contaipsAs proved aboveg is
the only proper coface of with y € () «, leaving itself as the
only remaining possibility. []

Sufficiency. We are ready to prove one direction of Theorem B.
Specifically, we show that an abstract simplicial compléxhat is
independent, canonically realizablelff, and satisfies the bound-
ary condition has a minimal inclusion-exclusion formula. Equiva-
lently, such a compleX” contains no redundant subset.

To obtain a contradiction, we assurfiehas a non-empty redun-
dant subseL. Because of (i) in the Redundant Subset Lemma, we
may assume thakt contains at least oné-simplex. Using (iii) of
the same lemma, we see thaglso contains théd — 1)-faces of
thatd-simplex. By iterating (ii) and (iii), we conclude thdt con-
tains alld-simplices of a component formed by connecting dhe
simplices across sharéd — 1)-faces. But therl also contains the
boundary(d — 1)-simplices of that component, which exist because
K is finite and geometrically realized i&?. But now we arrived
at a contradiction because a boundédy— 1)-simplex lacks the
d-simplex on its other side which, by (ii) of the Redundant Subset
Lemma, ought to be it.

Boundary and interior. Having established one direction of The-
orem B, we now prepare the other. LBtbe a finite set of balls in

R? and K C 22 an abstract simplicial complex. The only prop-
erties we assume are that the balls are in general position and that
IEFkx =1 5.

INSIDE-OUTSIDELEMMA. Let 3 C B be an independerit-
simplex, withk < d, not necessarily iK', andy € [(/3) a point
not on the(d — 1)-sphere bounding any ball iB — 3.

(i) If y lies in the interior of J B then3 € K implies thatkK
contains a proper coface D 3.

(i) If y lies on the boundary df) B theng € K.

PROOF To get (i), we note thatEF i is equal to 1 in a neigh-
borhood ofy. The Even Corollary implies that™ contains an even
number of cofaces gf whose common intersections contginlf
Bis in K then this number is at least two so there is also a proper
cofacea D B in K. To get (ii), we note thalEF i is equal to
1 in a neighborhood of except outsidé J B, where it is 0. The
Odd Corollary implies thaf contains an odd number of cofaces
of B whose common intersections contagin This odd number is
at least one, and sinck is a complex, this implies thak™ also
contains3. [

Figure 8: The edge belongs to 0, 1, or 2 triangles depending on
whether 2, 1, or 0 of the pointsy and z lie on the boundary of
the union of disks. The four points neary are the points z,
used in the derivation of Equation (4).

Similar to before, it is possible to get more detailed information
wheng € K isa(d—1)-simplex. Therl(3) consists of two points,
y andz, and we get 0, 1, or Z-simplices sharing depending on
whether both points lie on the boundary, one lies on the boundary
and the other in the interior, or both lie in the interiof ¢fB. The
three cases are illustrated in Figure 8.

Necessity. We are finally ready to prove the second direction of
Theorem B. Specifically, we show that an abstract simplicial com-
plex K with minimal inclusion-exclusion formuldEFx = 15



is independent, canonically realizable, and has the same boundaryb.
complex and underlying space as the dual complex. [1]

First independence. Suppo&eis not independent and let €
K be a non-independent simplex. By definitienhas a face?
such thaf) 8 — J(a — B) = B or, equivalently 8 C U(a — B).

Therefore,

(2]

Insg = 1ns 1ya-p [3]
dim
= 1ns- Y, (=D)"1p,
0#1Ca—B
— Z (_1)dim67dimﬂfllm(5, [4]
BCoCa

whered = S U ~, anddimé = dim B + dim~y + 1 because
B N~ = 0. We therefore get

2: (_l)ﬁmélmg

BC5Ca

[5]

0, ©®)

(6]
[7]

which implies that the set of faces af that are cofaces of is
redundant. In other words, the minimality &f implies its inde-
pendence.

Second realizability and boundary. Recall that a simplee-
longs to the boundary complex of the dual complexBoiff there
is a pointy € I(3) on the boundary of ) B. By (ii) of the Inside-
Outside Lemmag also belongs td<. By (i) of the same lemma,
every simplex inK for which there is no such pointis the face
of a d-simplex. As explained after the proof of that lemma, ev-
ery such(d — 1)-simplex belongs to twd-simplices, one on each
side. Intersect the (canonical images of the) simplices with an ori-
ented line that avoids all simplices of dimensién- 2 or less. It
meets the boundarfd — 1)-simplices in some order, alternating
between entering and exiting the underlying space. After entering
and before exiting, the line may encounter a sequence of interior
(d — 1)-simplices, alternating between entering and exiting- a
simplex. Since this is true for almost all oriented lines, the map-
ping of abstract simplices to their canonical images is a geometric
realization of K. Furthermore, the boundary complex and the un-
derlying space of< are equal to those of the dual complex. This
completes the proof of Theorem B.

(8]

5. CONCLUSION

The main result of this paper is a characterization of the mini-
mal inclusion-exclusion formulas of a union of closed ba#sn
R? that correspond to simplicial complexes. What about inclusion-
exclusion formulas that correspond to sets of simplices that do not
form complexes? The central concept is that of an independent
set of balls inR?, and our results rest on the observation that the
maximum size of such a setis+ 1. There are other classes of
geometric shapes with bounds on the size of independent sets. For
example, the number of independent ovals (each bounded by an
ellipse inRR?) is at most five. Does an upper boundiof- 1 on
the maximum number of independent shapes imply the existence
of an abstract simplicial complex of dimension at mbshat gives
a correct inclusion-exclusion formula? The argument leading to
Equation (5) might help in constructing such a complex. Can The-
orems A and B be extended to ovals and other classes of simple
shapes?
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