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Abstract
The tandem algorithm combines the marching cube algorithm for surface extraction and the edge contraction
algorithm for surface simplification in lock-step to avoid the costly intermediate step of storing the entire extracted
surface triangulation. Beyond this basic strategy, we introduce refinements to prevent artifacts in the resulting
triangulation, first, by carefully monitoring the amount of simplification during the process and, second, by driving
the simplification toward a compromise between shape approximation and mesh quality. We have implemented the
algorithm and used extensive computational experiments to document the effects of various design options and to
further fine-tune the algorithm.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Boundary representations,
Hierarchy and geometric transformations F.2.2 [Analysis of Algorithms and Problem Complexity]: Geometrical
problems and computations I.4.10 [Image Processing and Computer Vision]: Volumetric

1. Introduction

The work of Hoppe [Hop96] and of Garland and Heckbert
[GH97] opened a new chapter on surface simplification as a
central theme in geometric processing. In this paper, we con-
tribute to the growing body of work on variants, extensions,
and refinements of the original algorithm.

Historical perspective. Motivated by the demands of
large datasets, the generation of simplified representations
has long been a topic within computer graphics. As ap-
plied to geometric shapes, the focus has been on tri-
angulated surfaces embedded in three-dimensional space
[HDD∗93, RB93, SZL92]. A breakthrough in simplifying
such surfaces has been achieved in the late 1990s when Gar-
land and Heckbert combined the edge contraction opera-
tion developed by Hoppe and co-workers [HDD∗93, Hop96]
with anisotropic square norms representing the accumulated
error [GH97]. The confluence of these two ideas formed the
starting point of developments in several directions:

† Research by the first two authors was partially supported by
the IST Program of the EU under Contract IST-2002-506766
(Aim@Shape). Research by the third author was partially supported
by NSF grant CCR-00-86013 (BioGeometry).

• variants of the algorithm, including the restriction to
topology preserving edge contractions [DEGN99] and the
formulation of memoryless error measures [LT98];

• evaluation of the generated triangulations, including the
mathematical analysis of the original algorithm [HG99]
and the development of a software tool for experimental
comparison [CRS98];

• extensions to higher dimensions, including surfaces
with attributes [GH98, Hop99] and tetrahedral meshes
[SG98, THJW98];

• memory-efficient processing orders that focus the algo-
rithm to a moving window and this way simplify trian-
gulations that may be too large to fit into main memory
[ILGS03, Lin00, WK03].

Because of the central importance of simplification as a
means to abstract essential information from large datasets,
it is likely these themes will continue to be at the forefront
of geometry processing research.

Our contributions. The work reported in this paper started
with the realization that the limitation of edge contractions
to memory-efficient processing orders leads to artifacts in
the generated triangulations. Two questions arise: “how do
we capture or quantify the artifacts?” and “how do we avoid
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them?”. The answers to these questions are not independent.
Specifically, we use the insights gained in quantifying ar-
tifacts towards modifying the algorithm to counteract their
creation. Our approach is a mix of theoretical and experi-
mental analysis and design. We base our experimental work
on a particular memory-efficient processing order in which
the marching cube algorithm for surface extraction is com-
bined with the simultaneous simplification of the triangula-
tion. Building a surface layer by layer, the marching cube al-
gorithm has been intensively studied as a tool for extracting
iso-surfaces from density data [LC87, JLSW02, KBSS01].
We call our approach the tandem algorithm because it alter-
nates the extraction of a layer with the simplification of the
accumulated partial surface. Our contributions are:

1. the formulation and implementation of the tandem algo-
rithm;

2. the refinement of the processing order to counteract the
creation of artifacts;

3. the refinement of the error quadric of Garland and Heck-
bert to control the mesh quality;

4. the quantification of mesh isotropy and directional bias
as aspects of mesh quality.

We note that the method to control mesh quality is similar to
but different from the one described in [NE04]. On the tech-
nical side, our work uses anisotropic square norms, whose
mathematical formulation is developed in Appendix A. Even
though we have based our work on the tandem algorithm,
our results apply to other memory-efficient surface simplifi-
cation algorithms and to surface simplification in general.

Outline. Section 2 describes the marching cube algorithm
for surface extraction and the edge contraction algorithm for
surface simplification. Section 3 explains the tandem algo-
rithm, which combines the extraction and simplification of
the surface into one step. Section 4 introduces measures that
assess the quality of the extracted and simplified surfaces
and compares the classical and the tandem algorithms. Sec-
tion 5 concludes the paper.

2. Classical Algorithm

The classical algorithm for constructing the iso-surface of
a density function on R

3 first extracts a fine resolution rep-
resentation, which it then simplifies to a more appropriate
coarse resolution. We begin with a description on how the
density function is given.

Density data. The most common representation of a den-
sity function F : R

3 → R consists of a regular cube grid and
specifies the function value at every vertex. To be specific,
let the grid consist of all vertices with integer coordinates
0 ≤ i, j,k ≤ m and let F [i, j,k] store the function value at
the point (i, j,k) ∈ R

3. We sometimes refer to the third co-
ordinate as the rank. The k-th cross-section consists of all
vertices with rank k. The total number of vertices in the grid

is (m+1)3 and the number of vertices within a cross-section
is (m+1)2.

We can decompose the cubes in the grid into tetrahedra
(e.g. the six tetrahedra around a space-diagonal) and extend
the function values at the vertices to a continuous function
F : [0,m]3 → R by linear interpolation [Mun84]. Alterna-
tively, we may use bi-linear interpolation on the faces and
tri-linear interpolation within the cubes of the grid [Far97]. A
level set of such a continuous function consists of all points
that map to a common value C0 ∈ R:

F−1(C0) = {x ∈ [0,m]3 | F(x) = C0}.

A level set is often referred to as an iso-surface because un-
der reasonable genericity assumptions it is a 2-manifold with
or without boundary embedded in R

3. In the piecewise linear
setting, the assumption that C0 be different from F(u) for all
grid vertices u suffices to guarantee a 2-manifold. Further-
more, if F(u) 6= F(v) for all grid vertices u 6= v then all level
sets are surfaces albeit occasionally not 2-manifolds. Figure
1 illustrates the definitions.

k

m

0

k −1

Figure 1: Grid of data and partially extracted iso-surface
with shaded layer between the k-th and (k − 1)-st cross-
sections. The portion of the surface is a connected 2-
manifold of genus one with two boundary components.

Surface extraction. Given a grid specifying a continu-
ous density function F , and a constant C0 ∈ R, the march-
ing cube algorithm constructs the iso-surface M = F−1(C0)
[LC87]. We assume an implementation that returns a trian-
gulation K of M, which it constructs one layer at a time. To
define what this means, we use the fact that each constructed
triangle is contained in a single cube of the grid. It follows
that given k, every vertex, edge, and triangle can be uniquely
classified as below, in or above the plane of the k-th cross-
section. Consider the subset of vertices, edges and triangles
that lie in or below the k-th cross-section and call this subset
minus the subset in or below the (k−1)-st cross-section the
k-th layer of K. As illustrated in Figure 1, it consists of the
level set within the plane of the k-th cross-section (which
is a 1-manifold) and the open strip between the k-th and
the (k−1)-st cross-sections. Assuming Function EXTRACT

adds a layer to the current triangulation, we can write the
marching cube algorithm as a simple for-loop:
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void MARCHINGCUBE

for k = 0 to m do EXTRACT(k) endfor.

Calling the plane of the k-th cross-section the front, we
can summarize by saying the algorithm constructs the iso-
surface by sweeping the front from bottom to top.

Surface simplification. The triangulation is simplified by
iteratively contracting edges. The contraction of an edge
ab ∈ K removes ab together with the at most two incident
triangles. The vertices a and b are glued to each other to
form a new vertex c. Similarly, the two remaining edges of
each incident triangle are glued to form a new edge. Each
contraction has a cost, which is a measure of the numerical
error it introduces. Costs are used to prioritize contractions.
Initially, all edges of K are stored in a priority queue Q. To
describe the algorithm, we introduce four functions:

• MIN returns the edge with minimum cost (highest prior-
ity) and removes it from Q;

• MINCOST returns the cost of the edge with minimum
cost, without removing it from Q;

• LAMBDA decides whether or not the contraction of an
edge preserves the topological type of the triangulation,
as explained in [DEGN99];

• CONTRACT performs the contraction of an edge, which
includes the removal of edges from Q and the insertion of
new edges into Q.

We let the process continue until the minimum cost exceeds
a constant error threshold E0 > 0. We could contract edges
until the number of vertices shrinks below a target thresh-
old, but for reasons that will become clear later, we prefer to
control the algorithm with an error threshold.

void SIMPLIFY(float E0)
whileQ 6= ∅ and MINCOST ≤ E0 do ab = MIN;
if LAMBDA(ab) then CONTRACT(ab) endif

endwhile.

Since edges are contracted greedily, we should not expect
that the resulting simpler triangulation is in any sense opti-
mal.

3. Tandem Algorithm

If we simplify the surface right after extracting it, we might
as well combine the two steps into one in a way that avoids
ever storing the entire extracted surface. This is the idea of
the tandem algorithm, which applies the two processes in
lock-step. After describing the overall structure of the algo-
rithm, we look at refinements that prevent artifacts caused
by simplifying surface pieces with incomplete information.

Algorithm prototype. The tandem algorithm alternates be-
tween extracting one layer and further simplifying the tri-
angulation, K, of the current surface portion. Initially, K is
empty and so is the priority queue, Q, that schedules the
edge contractions. We use Function EXTRACT to add a layer

to K, Function INSERT to enter the edges of a layer into Q,
and the constant E0 > 0 to control the simplification process.

EXTRACT(0);
for k = 1 to m do EXTRACT(k);

INSERT(k−1); SIMPLIFY(E0)
endfor;
INSERT(m); SIMPLIFY(E0).

We note that Functions INSERT and SIMPLIFY are delayed
so that the top of the k-th layer remains unchanged until after
the (k + 1)-st layer has been added. Figure 2 illustrates the

Figure 2: Two partially extracted and simplified triangula-
tions of the Link dataset constructed by the tandem algo-
rithm without time-lag. The triangles of the respective last
layer are shaded.

algorithm whose design is motivated by two partially con-
tradicting objectives: efficiency in use of time and memory
and quality of the constructed triangulation. The main chal-
lenge to efficiency is the size of the extracted triangulation,
which can be huge. By alternating extraction and simplifi-
cation steps, we avoid that the entire extracted triangulation
has to be held in memory at any one time. The reduction in
storage implies we fit the triangulation into internal mem-
ory, at all times, which improves the speed of the software
by avoiding out-of-core computations. However, simplify-
ing without complete information has potential drawbacks.
The remainder of this section discusses refinements to the
tandem algorithm that alleviate any detrimental effects.

Preimages. We need some definitions before we can de-
scribe the techniques that counteract the artifacts caused by
scheduling with incomplete information. Most importantly,
we think of an edge contraction ab 7→ c as a function that
maps the vertices a and b to c. All other vertices are mapped
to themselves. The simplification is the composition of edge
contractions and can therefore be interpreted as a surjective
map from the vertex set of the initial triangulation to the ver-
tex set of the final triangulation:

Simpl : VertKinit → VertKfinal.

The preimage of a vertex u in the final triangulation is the
collection of vertices in the initial triangulation that map to
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u: Simpl−1(u). This definition makes sense for the classi-
cal simplification algorithm, but also for the tandem algo-
rithm by letting Kinit be the union of the extracted and un-
simplified layers.

An important concept is the set of triangles in the ini-
tial triangulation that are incident to at least one vertex in
Simpl−1(u), denoted by Preu ⊆ Kinit. Assuming all contrac-
tions preserve the topological type, it is not difficult to prove
that Preu ∩ Prev 6= ∅ iff uv is an edge in Kfinal. Similarly,
Preu ∩ Prev ∩ Prew 6= ∅ iff uvw is a triangle in the final
triangulation. In other words, the final triangulation is iso-
morphic to the nerve of the sets Preu [Ede01]. Each such
set of triangles defines a patch Uu =

S

Preu on the initial
surface. Since the final surface approximates the initial sur-
face, the general shape of the patches is related to the general
shape of the triangles in Kfinal. The lack of any information
beyond the front plane encourages patches that are elongated
in the directions contained in the sweep plane. We observe
the same tendency in edges and triangles of the final trian-
gulation.

Time-lag. We aim at scheduling the edge contractions in a
way that counteracts this bias in the shape and direction of
the edges and triangles. The goal is to obtain a triangulation
as close as possible to that constructed by the classical algo-
rithm. We therefore delay the contraction of an edge until we
think the front has passed its endpoints’ preimages under the
classical schedule. Since the classical schedule is not avail-
able, we can only estimate when exactly this happens. In the
implementation, we estimate for each vertex u the height, or
third coordinate of the center and the radius of the patch Uu.
To initialize this estimate, we set height(u) = rank(u) and
rad(u) = 1. When we create a new vertex c by contracting
the edge ab, we set

height(c) = (height(a)+height(b))/2;

rad(c) = (‖a−b‖+ rad(a)+ rad(b))/2.

Calling reach(c) = height(c)+ rad(c) the reach of the patch,
we prevent the contraction ab 7→ c as long as rank(front) <
reach(c). If both a and b lie in the front plane, we have
height(c) = rank(front), and since rad(c) > 0, the contrac-
tion of ab is surely inhibited. Similarly, if a lies in the front
plane but b lies below, we have reach(c) > rank(front) so the
contraction of ab is again inhibited. This implies that the top
of the k-th layer remains untouched until after the (k + 1)-st
layer has been extracted, as before.

We keep the edges of the prevented contractions in a wait-
ing queue, W , ordered by reach. Whenever the front ad-
vances, we move the edges in W with reach less than or
equal to the rank of the new front to Q. We use Function
DELAY to add the edges of the currently last layer k to W ,
and we use Function ACTIVATE to move edges with reach at
most k from W to Q. With this notation, we can now write
the new version of the tandem algorithm:

void TANDEM(float E0)
for k = 0 to m do EXTRACT(k);

DELAY(k); ACTIVATE(k); SIMPLIFY(E0)
endfor;
ACTIVATE(∞); SIMPLIFY(E0).

The last call to Function ACTIVATE happens after the entire
surface has been extracted and moves the remaining edges in
the waiting queue to Q. We then continue to simplify until
the cost of every edge in Q exceeds the error threshold, E0.
Figure 3 illustrates the effect of the time-lag strategy on the
triangulation. See Figure 4 for a side-by-side comparison of
triangulations obtained with the time-lag and the classical
algorithm.

Figure 3: Compare the partial triangulations constructed
with time-lag with the ones in Figure 2 constructed without
time-lag. The most striking difference is the more gradual
change in edge length between the simplified portion and
the yet unsimplified last layer. All edges are shown and the
ones in the waiting queue are drawn thicker than the others.

Error threshold. Similar to the original edge contraction
algorithm, we use an error threshold that bounds the square
distance between vertices and planes. However, instead of
the sum (or integral), we use the root of the average square
distance, whose maximum tends to be close to the mean dis-
tance between the extracted and the simplified surfaces; see
Section 4. To explain this in detail, let c be a vertex in the
current triangulation. Assuming we only apply contractions
that preserve the topological type, the corresponding patch,
Uc, is a topological disk. Every point y ∈ Uc belongs to a
triangle in Prec, and we let Py be the plane spanned by this
triangle. Writing d(x,Py) for the Euclidean distance between
a point x and its closest point on Py, the average square dis-
tance of x from Uc is

hc(x) =
1

area(Uc)

Z

y∈Uc

d2(x,Py) dy

=
1

Wc
∑

t∈Pre c
wtd

2(x,Pt),

where the weights measure area, wt = area(t), Wc = ∑t wt =
area(Uc), and Pt is the plane spanned by the triangle. As de-
scribed in [GH97], this average can be written as hc(x) =
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xT Hcx/Wc, where x is the point x with an added fourth co-
ordinate equal to 1, and Hc = ∑t wtntnT

t , with nt the unit
normal of the plane Pt again with an added fourth coordi-
nate, this time equal to the signed distance of the origin from
the plane. Generically, Hc is positive definite, implying hc

has a unique minimum. Letting ab 7→ c be the contraction
that creates c, it is natural to choose that minimum as the
location for the vertex c in R

3. This motivates us to refer to

ε0(c) =
√

hc(c) =
√

cT Hcc/Wc

as the shape measure of the resulting vertex and to use it as
the priority of the edge ab in Q.

To compute the shape measure, we may use inclusion-
exclusion and get Hc = Ha +Hb−Hab and Wc =Wa +Wb−
Wab, as explained in [Ede01]. This requires we store a 4-by-
4 matrix and a weight with every vertex, edge, and trian-
gle in K. To reduce the amount of storage, we may alterna-
tively compute the new matrix and weight as Hc = Ha +Hb
and Wc = Wa +Wb, which amounts to letting each triangle
t ∈ Prec contribute once, twice, or three times depending on
how many of its vertices belong to Simpl−1(c). The multi-
plicity of each triangle is the same in both, so it makes sense
to take the ratio and interpret it as the average square dis-
tance, now with appropriate multiplicities. All experiments
presented in Section 4 are done with the latter, more memory
efficient implementation.

Mesh isotropy. A disadvantage of using the shape mea-
sure by itself is the occasional creation of long and skinny
triangles. These are indeed most economical in some cases,
like the approximation of locally cylindrical surface pieces.
However, such triangles are often undesirable if the mesh is
used for downstream computations. We therefore modify the
shape measure, steering the algorithm toward a compromise
between accuracy of the approximation and quality of the
mesh. Using a memoryless strategy, we consider the contrac-
tion ab 7→ c, let Tab be the collection of triangles that contain
a or b or both, and let Sab =

S

Tab be the patch replaced dur-
ing the edge contraction. The square distance function from
points of this patch is then

gc(x) =
Z

y∈Sab

‖x− y‖2 dy

= ∑
t∈Tab

wt

(

‖x− t̂‖2 + avg(t)
)

,

where wt = area(t) is the area of the triangle t, t̂ is its cen-
troid, and avg(t) is the average square distance of a point
y ∈ t from the centroid. Letting p,q,r be the vectors from t̂
to the vertices, we have avg(t) = 1

12 (‖p‖2 + ‖q‖2 + ‖r‖2);
see Appendix A. As before, we can write the function in ma-
trix form, gc(x) = xT Gcx, where Gc = ∑t wtGt and Gt is the
quadric defined by three orthogonal planes passing through
t̂, with avg(t) added to the entry in the lower right corner. It is
clear that Gc is positive definite and that gc has a unique min-
imum, namely the centroid of Sab. In contrast to Hc, which

can be singular, Gc has always full rank and good condition
number. Figure 4 illustrates the effect of mixing the shape
and the anisotropy measure in simplifying a surface triangu-
lation.

Figure 4: Four triangulations of the Pillow Box dataset
computed above by the classical algorithm and below by
the tandem algorithm with time-lag, both for error threshold
E0 = 0.2. Isotropy parameter α = 0 on the left and α = 0.2
on the right.

In order to balance the influence of hc and gc, we nor-

malize the latter using W = 3area(Sab)W
1/2
c /E0. Letting

α ∈ [0,1] be a constant, we choose the location of the new
vertex created by the contraction ab 7→ c at the unique mini-
mum of (1−α)hc +αgc/W . Accordingly, the priority of the
edge is

εα(c) =
√

(1−α)hc(c)+αgc(c)/W

=
√

cT [(1−α)Hc/Wc +αGc/W ]c.

We call ε1(c) the anisotropy measure of the vertex. The
isotropy parameter, α, represents a compromise between
shape measure and anisotropy measure, defined by ε2

α =
(1−α)ε2

0 +αε2
1. Besides the desired effect of improving the

mesh quality, gc has also the undesired effect of moving ver-
tices off the original surface. We therefore use a conserva-
tive strategy, allowing only contractions for which the shape
measure does not exceed the error threshold, ε0 ≤ E0.

4. Computational Experiments

In this section, we present the results of various computa-
tional experiments we performed. With the primary goal of
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understanding the impact of specific design decisions, we
measure the running time, the used memory, the distance be-
tween surfaces, the mesh quality, and the directional bias of
the edges and triangles in the mesh.

Datasets and sizes. We begin by introducing the datasets
we use to present our experimental findings. Each set is a
density map, F , specified at the integer vertices of a grid
of size (m + 1)3. For each set, we find a density thresh-
old, C0, and extract the initial surface, M = F−1(C0), using
the marching cube algorithm. Table 1 gives the size of each
dataset, the percentage of cubes crossed by the surface, and
the number of triangles in the extracted surface triangulation.
The datasets in the first group are synthetic, being generated

dataset grid-size Xed cubes #triangles

Pillow Box 1283 3.53% 148,288
Link 1283 1.71% 71,904

Young Bone 2563 4.89% 1,641,524
Old Bone 2563 2.04% 684,268

Table 1: The number of triangles in the extracted triangu-
lation is roughly twice the number of cubes crossed by the
surface. We also note that doubling the resolution implies a
roughly four-fold increase in the number of crossed cubes
and a two-fold decrease in their percentage within the grid.

from simple mathematical functions; see Figures 2, 3, and
4. The datasets in the second group are reconstructions of
microscopic pieces of human bone; see Figure 5.

Running time and memory. We did all experiments on
a PC with Intel Pentium M processor with clock speed of
1400MHz and available memory of 511 MB. Table 2 shows
the running time needed to extract and simplify the sur-
faces. In each case, the tandem algorithms outperform the
classical algorithm, which first extracts and second simpli-
fies the surface. The difference is less dramatic for the syn-
thetic datasets, for which we compute the density whenever
we need it. The difference is more apparent for the experi-
mentally obtained human bone datasets, which are stored in
tables from which density values are looked up.

Figure 6 illustrates the difference in amount of memory
consumed by the classical and the tandem algorithms. Be-
sides the grid specifying the density function, which is the
same for all algorithms, the main need for memory arises
from storing the triangulation. We count the triangles after
each extraction and after each simplification step. The alter-
nation between extracting and simplifying practiced by the
tandem algorithms expresses itself in the ‘saw-tooth’ char-
acter of the graph for the memory requirement. In contrast,
the classical algorithm grows the triangulation one layer at a
time and shrinks the size in a single final simplification step.

Figure 5: Above: the surface extracted from Young Bone
using the tandem algorithm with time-lag. We have 241,354
triangles on the left, which is further reduced to 39,599 tri-
angles to show some of the details on the right. Below: the
same for the Old Bone, with 233,139 triangles on the left
and 19,725 triangles on the right.

running time (in seconds)
dataset mc ec tm-w/o tm-w

Pillow Box 15.36 10.16 21.71 23.27
Link 11.37 4.72 14.29 15.12

Young Bone 31.09 122.02 108.37 126.76
Old Bone 22.92 48.36 52.29 60.34

Table 2: Running time averaged over ten runs of the clas-
sical algorithm (split into the marching cube (mc) and the
edge contraction steps (ec)) and the tandem algorithm with-
out (tm-w/o) and with time-lag (tm-w). For the synthetic
datasets, the error threshold is one tenth of the side-length of
an integer cube, E0 = 0.1, and for the human bone datasets
it is one fifth that side-length, E0 = 0.2.

Approximation error. Following [CSAD04], we measure
the distance between two surfaces, M and N, using averages
of point-to-surface distances. More precisely, for every pos-
itive integer p ≥ 1, the directed Lp-distance is

Lp(M|N) =

(

1
area(M)

Z

x∈M

d p(x,N) dx

)1/p

,

where d(x,N) is the infimum Euclidean distance between
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Figure 6: Evolving size of the triangulated surface for the
classical algorithm and for the tandem algorithms with and
without time-lag. We observe four mild local maxima for
each tandem algorithm, which correspond to the layers con-
taining the four sets of surface saddles.

x and points y ∈ N. In the limit, we have L∞(M|N) =
supx infy ‖x− y‖. The (undirected) Lp-distance is the larger
of the two measurements,

Lp(M,N) = max{Lp(M|N),Lp(N|M)} .

We are particularly interested in p = 1,2,∞, referring to L1
as the mean distance, L2 is the root mean square or RMS
distance, and to L∞ as the Hausdorff distance. We esti-
mate these distances using the Metro software described in
[CRS98], which approximates the integrals by sums of dis-
tances from points sampled on the surfaces. We compare
the distances with the shape measure used in the simplifi-
cation process. Recall that ε0(c) is the root mean square dis-
tance of vertex c from the planes spanned by triangles that
have at least one vertex in the preimage of the vertex. Defin-
ing the shape error as Error(K) = maxu∈K ε0(u), we have
Error(K) ≤ E0, by construction.

We are interested in the relation between the shape error
and the distance measured between the initial and the final
surface triangulations. As illustrated in Figure 7, we find lin-
ear relations between the shape error and the mean and the
RMS distances, which are both smaller than Error(K). Not
surprisingly, the Hausdorff distance is less predictable than
the others. We also find that the Hausdorff distance from the
final to the initial triangulation is usually smaller than if mea-
sured in the other direction. In hind-sight, this is also not sur-
prising since the algorithm minimizes the former distance by
carefully choosing the locations of the vertices in K = Kfinal.
As expected, we observe an inverse relationship between the
number of triangles and the error threshold for each algo-
rithm. Somewhat unexpected, however, is that the tandem
algorithms consistently outperform the classical algorithm
and reach triangulations with fewer triangles for almost ev-
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Figure 7: Distances between the initial surface and the one
generated by the classical algorithm as functions of the er-
ror threshold, E0. The dataset is Old Bone but with lower
resolution on a grid of size 1483. In addition, we show the
number of triangles generated by the three algorithms.

ery error threshold. We have no convincing explanation for
this observation.

Mesh quality. In the context of numerical methods, trian-
gulations are often referred to as meshes and used as the ba-
sis for analysis and simulation. For reasons that have to do
with the convergence and stability of numerical algorithms,
meshes consisting of ‘well-shaped’ triangles are generally
preferred over meshes that contain long and skinny trian-
gles. To quantify this difference, we define the aspect ratio
of a triangle t = abc as ρ(t) =

√

λ2/λ1, where λ1 ≥ λ2 are
the eigenvalues of the matrix Mabc = 1

3 [aaT + bbT + ccT ],
assuming the centroid is at the origin, 1

3 (a + b + c) = 0. As
explained in Appendix A, the eigenvalues are non-negative
reals, with λ1 > 0 unless a = b = c = 0, and λ1 = λ2 iff the
triangle is equilateral. Letting n be the number of triangles,
we define the anisotropy as one minus the average aspect
ratio:

Anisotropy(K) = 1−
1
n ∑

t
ρ(t).

We have 0 ≤ Anisotropy(K) ≤ 1 and Anisotropy(K) = 0 iff
all triangles are equilateral.

Of primary interest is how the isotropy parameter re-
lates to the anisotropy of the constructed mesh. As shown
in Figure 8, the anisotropy decreases before it reaches a
plateau. We see this pattern both for the classical algorithm
and the tandem algorithm with time-lag, with the latter gen-
erally reaching lower values of anisotropy. Without time-
lag, the anisotropy for the tandem algorithm is consider-
ably higher than for the others. We believe the main reason
are severe self-intersections caused by the sudden change in
edge length near the front, which is already visible in Figure
2. The number of triangles increases steadily for all three
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Figure 8: The number of triangles and the anisotropy of the
generated meshes as a function of the isotropy parameter, α.
The error threshold is E0 = 0.2.

algorithms, with the classical algorithm generally produc-
ing the smallest triangulations. This can be explained by
well-shaped triangles being less efficient in approximating
a shape within a given error threshold.

Directional bias. Replacing each point of a surface M in R
3

by its two unit normals defines a centrally symmetric density
on the sphere of directions, S

2. If M is a sphere itself we get
the uniform density. Most other surfaces define non-uniform
densities. Given a triangulation K of M, we measure the non-
uniformity with the average tensor product

Mn =
1

area(K) ∑
t∈K

wtntn
T
t ,

where wt is the area and nt is one of the two unit nor-
mals of the triangle t. The corresponding square norm is
dn(x) = xT Mnx. As explained in Appendix A, ‖x‖ = 1 im-
plies that d(x) is the average square length of the unit normal
vector components in the direction x. This is visualized by
the ellipsoid of points Mnx, with x∈ S

2. The axes of the ellip-
soid are in the directions of the eigenvectors of Mn and their
half-lengths are equal to the eigenvalues, µ1 ≥ µ2 ≥ µ3 ≥ 0.
For example, if K triangulates the boundary of a pancake (a
flattened sphere) then the normals are concentrated near the
poles of S

2, assuming they approximate the normals of the
smooth boundary of the pancake. The square distance func-
tion, d(x), is large at and near the poles and small along and
near the equator that separates the poles. It follows that Mn

has one large and two small eigenvalues.

We are interested in measuring the directional bias in the
triangulation as opposed to the surface represented by the
triangulation. In particular, we are curious to what extent the
sweep-direction biases the shape of the triangles created by
the tandem algorithm. We aim at something like the average
triangle shape, which we express using the average tensor

product

Ms =
2

area(K) ∑
t∈K

wt
Mabc

trace Mabc
,

where a,b,c are the vectors from the centroid to the three
vertices. The corresponding square norm is ds(x) = xT Msx.
To get a feeling for this measure, consider an equilateral
triangle, t. If we add its contribution to ds to its contribu-
tion to dn we get the weighted square distance from the
origin, which is an isotropic square norm. We therefore
define M = Mn + Ms and the corresponding square norm
d(x) = dn(x)+ ds(x). If all triangles are equilateral then M
is the identity matrix and d(x) = ‖x‖2. Adding Mn to Ms can
therefore be interpreted as removing the non-uniformity of
the density of normals that is due to the shape of the sur-
face. The matrix M and its square norm d thus represent the
non-uniformity in the triangulation that remains after remov-
ing from Ms the non-uniformity inherent in the surface. We
measure what remains by the directional bias defined as

Bias(K) = 1−
27det M

(trace M)3 .

Indeed, if M is the identity matrix then its three eigenval-
ues are µ1 = µ2 = µ3 = 1, det M = 1, trace M = 3, and
Bias(K) vanishes. We have 0 ≤ Bias(K)≤ 1, in general, and
Bias(K) = 0 if all triangles are equilateral. Note however that
zero directional bias is also possible with non-equilateral tri-
angles, for example if K has the symmetry group of a Pla-
tonic solid. We note that the Pillow Box has the sym-
metry group of a cube which implies that dn is isotropic,
and if its triangulation has the same symmetry group then
d(x) = ‖x‖2.
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Figure 9: The directional bias of the triangulation as a func-
tion of the error threshold.

The results of our experiments are illustrated in Figure
9. Clearly, the time-lag strategy has a major impact, remov-
ing most of the directional bias we see in the triangula-
tion generated by the tandem algorithm without time-lag. As
mentioned above, the measurement of the directional bias
is reliable only for surfaces with sufficiently rich symmetry
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groups, such as the Pillow Box. For this dataset, Mn is
indeed very close to isotropic. In contrast, the human bone
datasets are not symmetric and their matrices Mn are not
necessarily isotropic, which complicates the interpretation
of M. Nevertheless, we can compare the directional biases
computed for different triangulations and again see a strik-
ing improvement if we use the time-lag strategy.

5. Conclusion

The literature on surface simplification has recently focused
on out-of-core algorithms, advocating the localization of the
process to a varying patch window that eventually exhausts
the surface [ILGS03, Lin00, WK03]. This is similar to our
sweep approach to local simplification. None of these pa-
pers has looked at artifacts caused by the localization of
the process, and we believe that they would all benefit from
adapting the time-lag strategy and the anisotropy measure
described in this paper.
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Appendix A:

In this appendix, we review standard results on matrices de-
fined as average tensor products of sets of vectors.

Anisotropic square norms. Given a set of n vectors ui ∈
R

2, the average tensor product is

M =
1
n ∑

i
uiu

T
i ,

which is a positive semi-definite symmetric 2-by-2 matrix.
The corresponding anisotropic square norm d : R

2 → R is
defined by d(x) = xT Mx. It has a straightforward interpreta-
tion in terms of square distances of the points ui from lines
passing through the origin. To see this, let L be such a line
with unit normal x and note that (xT ui)

2 = xT uiu
T
i x is the

square distance of ui from L. It follows that d(x) is the aver-
age square distance of the points ui from L.

Alternatively, we can think of M as the linear map M :
R

2 → R
2 defined by M(x) = Mx. Let e1 and e2 be the two

eigenvectors. Since M is positive semi-definite symmetric,
the two corresponding eigenvalues are non-negative reals,
λ1 ≥ λ2 ≥ 0. By definition of eigenvectors and eigenvalues,
we have Me j = λ je j , for j = 1,2. It follows that the image
of the unit circle is the ellipse with axes of half-lengths λ j
in the directions e j , as illustrated in Figure 10. This ellipse

ϕ

x

e2

M x

e1

Figure 10: The unit circle and its image under the linear
map M.

is a depiction of the average square length of the vectors
ui in all directions. Indeed, letting ϕ be the angle such that
x = e1 cosϕ+ e2 sinϕ, we have

d(x) = xT (Mx)

= [cosϕ,sinϕ]

[

λ1 0
0 λ2

][

cosϕ
sinϕ

]

= λ1 cos2 ϕ+λ2 sin2 ϕ.

In words, the average square distance depends only on the
direction and the eigenvalues of the transformation matrix.

The shape of a triangle. Consider a triangle with vertices
a,b,c ∈ R

2 and centroid 1
3 (a + b + c) = 0 at the origin. The

average tensor product of the three vectors is

Mabc =
1
3

[

aaT +bbT + ccT
]

.

We call the eigenvectors of Mabc the principal directions and
the square root of the ratio of eigenvalues,

√

λ2/λ1, the as-
pect ratio of abc. If λ1 = λ2 then the principal directions
are ambiguous and the aspect ratio is 1. To get started, we
observe that unit aspect ratio characterizes equilateral trian-
gles. Let uvw be an equilateral triangle whose vertices are at
unit distance from the centroid at the origin. We note that

1
3

[

uuT u+ vvT u+wwT u
]

=
u
3
−

v+w
6

=
u
2
,

which implies that u is an eigenvector of Muvw. By symme-
try, v and w are also eigenvectors. Three different eigenvec-
tors are only possible in the ambiguous case, when Muvw

has two equal eigenvalues. Any other triangle abc with cen-
troid at the origin defines a transformation matrix A such that
a = Au, b = Av, c = Aw. The matrix defined by the new trian-
gle is Mabc = 1

3 [AuuTAT +AvvTAT +AwwTAT ] = AMuvwAT .

It has two equal eigenvalues iff AAT does. The latter condi-
tion is equivalent to A being a similarity and to abc being
equilateral.

We note in passing that the image of the circle passing
through u,v,w is an ellipse that passes through a,b,c and has
its center at the centroid of abc. This is known as the Steiner
circumellipse, which is the unique area-minimizing ellipse
that passes through the three points [Kim98]. Heckbert and
Garland use the ratio of axes of this particular ellipse to de-
fine the aspect ratio of a triangle [HG99]. It is not difficult
to show that this notion of aspect ratio agrees with the one
based on Mabc given above.

Equivalent formulations. We conclude this appendix by
noting that the same matrix, Mabc, can be obtained by sum-
ming over vectors different from a,b,c. Take for example
the edge vectors p = b−a,q = c−b,r = a− c of the trian-
gle and note that ppT + qqT + rrT = 3aaT + 3bbT + 3ccT ,
which implies Mpqr = 3Mabc. We may also average over all
points in the triangle t = abc and get the covariance matrix,

Mt =
1

area(t)

Z

x∈t
xxT dx,

which can be shown is equal to one quarter the average ten-
sor product of the vertices, Mt = 1

4 Mabc. We omit the proof.
The trace of the covariance matrix is

trace Mt =
1

area(t)

Z

x∈t
xT x dx,

which is the average square distance of a point x from the
centroid at the origin. Since the trace of Mt is one fourth of
the trace of Mabc, we now have a convenient formula for the
average square distance from the centroid, namely avg(t) =
1

12 [aT a+bT b+ cT c].
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Figure 11: Above: the surface extracted from Young Bone using the tandem algorithm with time-lag. We have 209,321
triangles on the left, which is further reduced to 36,645 triangles on the right. Below: the same for the Old Bone, with
205,482 triangles on the left and 21,103 triangles on the right.

c© The Eurographics Association 2005.


