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Abstract

Delaunay triangulations and Voronoi diagrams have found numerous applications in surface modeling, surface
mesh generation, deformable surface modeling and surface reconstruction. Many algorithms in these applications
begin by constructing the three-dimensional Delaunay triangulation of a finite set of points scattered over a sur-
face. Their running-time therefore depends on the complexity of the Delaunay triangulation of such point sets.

Although the complexity of the Delaunay triangulation of points in may be quadratic in the worst-case,
we show in this paper that it is only linear when the points are distributed on a fixed set of well-sampled facets of
(e.g. the planar polygons in a polyhedron). Our bound is deterministic and the constants are explicitly given.

1 Introduction

Delaunay triangulations and Voronoi diagrams are among the most thoroughly studied geometric data structures in
computational geometry. Recently, they have found many applications in surface modeling, surface mesh genera-
tion [13], deformable surface modeling [22, 17], medial axis approximation [4, 9, 23], and surface reconstruction
[1, 2, 10, 3, 7, 6]. Many algorithms in these applications begin by constructing the three-dimensional Delaunay tri-
angulation of a finite set of points scattered over a surface. Their running-time therefore depends on the complexity
of the Delaunay triangulation of such point sets.

It is well known that the complexity of the Delaunay triangulation of points in , i.e. the number of its sim-
plices, can be [11]. In particular, in , the number of tetrahedra can be quadratic. This is prohibitive
for applications where the number of points is in the millions, which is routine nowadays. Although it has been ob-
served experimentally that the complexity of the Delaunay triangulation of well-sampled surfaces is linear (see e.g.
[10, 14]), no result close to this bound has been obtained yet. Our goal is to exhibit practical geometric constraints
that imply subquadratic and ultimately linear Delaunay triangulations. Since output-sensitive algorithms are known
for computing Delaunay triangulations [12], better bounds on the complexity of the Delaunay triangulation would
immediately imply improved bounds on the time complexity of computing the Delaunay triangulation.

First results on Delaunay triangulations with low complexity have been obtained by Dwyer [15, 16] who proved
that, if the points are uniformly distributed in a ball, the expected complexity of the Delaunay triangulation is only
linear. Recently, Erickson [18, 19] investigated the complexity of three-dimensional Delaunay triangulations in
terms of a geometric parameter called the spread, which is the ratio between the largest and the smallest interpoint
distances. He proved that the complexity of the Delaunay triangulation of any set of points in with spread
is .

Despite its practical importance, the case of points distributed on a surface has not received much attention. A
first result has been obtained by Golin and Na [20]. They proved that the expected complexity of 3D Delaunay
triangulations of random points on any fixed convex polytope is . Very recently, they extended their proof
to the case of general polyhedral surfaces of and obtained a bound on the expected complexity of
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the Delaunay triangulation [21]. Deterministic bounds have also been obtained. Attali and Boissonnat [5] proved
that, for any fixed polyhedral surface , any so-called “light-uniform -sample” of of size has only
Delaunay tetrahedra. If the surface is convex, the bound reduces to . Applied to a fixed uniformly-sampled
surface, the result of Erickson mentioned above shows that the Delaunay triangulation has complexity .
This bound is tight in the worst-case. It should be noticed however that Erickson’s definition of a uniform sample
is rather restrictive and does not allow two points to be arbitrarily close (in which case, the spread would become
infinite).

In this paper, we consider the case of points distributed on a fixed finite set of interior-disjoint planar regions whose
total area is positive and whose total perimeter is finite. This includes the case of polyhedral surfaces. Under a
mild uniform sampling condition (depending on a parameter ), we show that the complexity of the Delaunay
triangulation of the points is linear when is a constant. Our bound is deterministic. The constants are explicitly
given and depend on and on the number of planar regions , the total area and the total perimeter of the
regions. More precisely, our main result states that the number of Delaunay edges is at most :

Our bound holds for any .

2 Definitions and notations

2.1 Voronoi diagrams and Delaunay triangulations

Let be a set of points of . The Voronoi cell of is

where denotes the Euclidean distance between the two points of . The collection of Voronoi cells
is called the Voronoi diagram of , denoted . The Delaunay triangulation of , denoted is the dual
complex of (see Figure 1). If there is no sphere passing through points of , is a simplicial
complex that can be obtained from as follows. If is a subset of points of whose Voronoi cells have
a non empty intersection, the convex hull is a Delaunay face and all Delaunay faces are obtained this
way. It is well known that the balls circumscribing the -simplices in cannot contain a point of in their
interior. The complexity of is the number of its faces, which is also the number of faces of the dual Voronoi
diagram.

A ball or a disk is said to be empty if and only if its interior contains no point of . We also say that a sphere is
empty if the associated ball is empty.

Figure 1: Voronoi diagram of a set of points on the left and its dual Delaunay triangulation on the right.

2.2 Notations

For a curve , we denote by its length. For a portion of a surface , we denote by its area,
and by its boundary. We further denote by ( ) the ball (sphere) of radius centered at , and by

the disk lying in plane centered at and of radius .
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Let be a plane and be a region of . The plane containing is called a supporting plane of . We
define:

is obtained by growing by within its supporting plane and is obtained by shrinking by
within its supporting plane . When the supporting plane is unique or when it is clear from the context, we will
simply note and .

2.3 Polyhedral surfaces

In this paper, we use the term polyhedral surface to denote a fixed finite set of interior-disjoint planar regions
whose total area is positive and whose total perimeter is finite. Accordingly, the planar regions are called facets
and the intersection between two facets is called an edge. This abuse of terminology is mainly for simplicity and
to refer to what is probably the most important case in applications. It should be kept in mind however that our
results hold for objects that are more general than usual polyhedral surfaces. In particular, we do not require our
polyhedral surfaces to be connected or to be manifolds, we allow an arbitrary number of facets to be glued to a
commin edge etc.

In the rest of the paper, denotes an arbitrary but fixed polyhedral surface. Three quantities , and will
express the complexity of the surface : denotes the number of facets of , its area, and
the sum of the lengths of the boundaries of the facets of :

Observe that, if an edge is incident to facets, its length will be counted times.

We consider two zones on the surface, the -singular zone that surrounds the edges of and the -regular zone
obtained by shrinking the facets.

Definition 1 Let . The -regular zone of a facet is . The -regular zone of is the union of
the -regular zones of its facets. The -singular zone of (resp. ) is the set of points that do not belong to the
-regular zone of (resp. ).

Observe that the -singular zone of consists exactly of the edges of .

2.4 Sample

Any finite subset of points is called a sample of . The points of are called sample points. We impose
two conditions on samples. First, the facets of the surface must be uniformly sampled. Second, the sample cannot
be arbitrarily dense locally.

Definition 2 Let be a polyhedral surface. is said to be a -sample of if and only if for every facet
of and every point :

the ball encloses at least one point of ,

the ball encloses at most points of .

The 2 factor in the second condition of the definition is not important and is just to make the constant in our bound
simpler. Any other constant and, in particular 1, will lead to a linear bound.

In the rest of the paper, denotes a -sample of and we provide asymptotic results when the sampling
density increases, i.e. when tends to . As already mentioned, we consider and the surface (and, in particular,
the three quantities , and ) to be fixed and not to depend on .
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Several related sampling conditions have been proposed.

Amenta and Bern have introduced -samples [1] that fit locally the surface shape: the point density is high where
the surface has high curvature or where the object or its complement is thin. However this definition is not appro-
priate for polyhedral surfaces since an -sample, as defined in [1], should have infinitely many points.

Erickson has introduced a notion of uniform sample that is related to ours but forbids two points to be too close
[18]. Differently, our definition of a -sample does not impose any lower bound on the minimal distance
between two sample points.

In [5], Attali and Boissonnat use a slightly different definition of a -sample. They assumed that for every
point , the ball encloses at least one sample point and the ball encloses sample
points. With this sampling condition, they proved that the complexity of the Delaunay triangulation is for
general polyhedral surfaces and for convex polyhedral surfaces. In this paper, our definition of a -
sample is slightly more restrictive since the facets need to be sampled independently of one another, which leads to
add a few more sample points near the edges. However, the two conditions are essentially the same and our linear
bound holds also under the slightly more general sampling condition of [5].

Golin and Na [20, 21] assume that the sample points are chosen uniformly at random on the surface. The practical
relevance of such a model is questionable since data are usually produced in a deterministic way.

3 Preliminary results

designates a polyhedral surface and a -sample of . We denote by the number of elements of
. Let be the number of sample points in the region . Let be the total number

of sample points. We first establish two propositions relating and . We start with the following lemma:

Lemma 1

Proof. Let be a facet of . Let be a maximal set of non-intersecting disks lying inside
. Because the set of disks is maximal, no other disk can be added without intersecting .

This implies that no point of is at distance greater than from a point (see Figure 2). Therefore,
is a covering of . We have . Because of our sampling condition, every

disk contains at least one sample point. Therefore, and

By summing over the facets of , we get the result.

Lemma 2 Let be a facet of . For any , we have:

Proof. Let be a maximal set of non-intersecting disks lying inside . Because the set
of disks is maximal, no other disk can be added without intersecting . This implies that no point
of is at distance greater than from a point . Therefore, is a covering of . We have:
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Figure 2: A maximal set of non-intersecting disks contained in and the corresponding covering of obtained
by doubling the radii of the disks.

Proposition 3 Let be a facet of . For any , we have:

Proof. By Lemma 1, we have:

We apply Lemma 2 to bound from above.

Eliminating from the two inequalities yields the result.

Proposition 4 Let be a facet of . Let be a curve contained in . Let . We have:

Proof. Arguing as in the proof of Lemma 2, we see that the region can be covered by disks of
radius centered on and contained in the supporting plane of .
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Applying Lemma 2 to a disk with radius , we get:

Therefore, we have :

From Lemma 1, we get:

Combining the two inequalities leads to the result.

Lemma 5 Let be a sample point in the -regular zone of . Let be the supporting plane of the facet through
. Any empty sphere passing through intersects in a circle whose radius is less than .

Figure 3: Assume is an empty sphere passing through a point and intersecting the supporting plane
of in a circle of radius greater than . Then, contains an empty disk centered on .

Proof. The proof is by contradiction. Let be the supporting plane of . Consider an empty sphere passing
through and intersecting along a circle of radius greater than (see Figure 3). Let be the center of this circle.
Let be the point on the segment at distance from . Because belongs to the -regular zone of , .
The empty sphere encloses the disk . Therefore, is an empty disk of , centered on and
of radius , which contradicts our sampling condition.

4 Counting Delaunay edges

Let be a polyhedral surface and be a -sample of . The Delaunay triangulation of connects two points
if and only if there exists an empty sphere passing through and . The edge connecting and is called

a Delaunay edge. We will also say that and are Delaunay neighbours.

The number of edges and the number of tetrahedra incident to a vertex lying in the interior of the convex
hull of are related by Euler formula

since the boundary of the union of those tetrahedra is a simplicial polyhedron of genus 0. Using the same argument,
if lies on the boundary of the convex hull, we have:
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By summing over the vertices, and observing that a tetrahedron has four vertices and an edge two, we get

To bound the complexity of the Delaunay triangulation, it is therefore sufficient to count the Delaunay edges of .

We distinguish three types of Delaunay edges : those with both endpoints in the -regular zone, those with both
endpoints in the -singular zone and those with an endpoint in the -regular zone and the other in the -singular
zone. They are counted separately in the following subsections,

We denote by the set of sample points in the -singular zone of .

4.1 Delaunay edges with both endpoints in the -regular zone

In this section, we count the Delaunay edges joining two points in the -regular zone.

Lemma 6 Let be a sample point in the -regular zone and the facet that contains . has at most Delaunay
neighbours in .

Proof. By Lemma 5, any empty sphere passing through intersects in a circle whose radius is less than .
Therefore, the Delaunay neighbours of on are at distance at most from . By assumption, the disk centered
at with radius contains at most points of .

Lemma 7 Let be a sample point in the -regular zone of a facet . Let be another facet of . has at
most Delaunay neighbours in the -regular zone of facet .

Proof. Refer to Figure 4. and are the supporting planes of and , is a Delaunay neighbour of in the
-regular zone of and is an empty sphere passing through and . Let be the closed ball whose boundary
is . intersects the planes and along two disks whose radii are respectively and . By Lemma 5,
and .

Figure 4: Any sphere passing through and intersects one of the two planes or in a circle whose diameter
is at least .

Let be the bisector plane of and . Let and be the points symmetric to and with respect to .
Consider the sphere centered on and passing through the four points , , and . Let be the closed
ball whose boundary is . intersects and along two disks and of the same radius . We claim
that . Indeed, let be the center of and be the center of . Let (resp. ) be the
bisector plane of and (resp. of and ). Observe that and . If ,

and the claim is proved. Otherwise, must belong to one of the two open halfspaces limited by .
If belongs to the halfspace that contains , encloses and therefore while in the second it encloses

and .
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We therefore have :

and consequently:

The Delaunay neighbours of in the -regular zone of lie in the disk . This disk contains at most
points of .

Proposition 8 There are at most Delaunay edges with both endpoints in the -regular zone of .

Proof. The surface has facets. Therefore, by Lemmas 6 and 7, a point in the -regular zone of has at
most Delaunay neighbours.

4.2 Delaunay edges with both endpoints in the
-singular zone

In this section, we count the Delaunay edges joining two points in the -singular zone (see Figure 5).

Proposition 9 The number of Delaunay edges with both endpoints in the -singular zone is less than

Proof. By Proposition 4, the number of sample points in the -singular zone is at most

Hence, the number of Delaunay edges in the -singular zone is at most .

Figure 5: Example of a Delaunay triangulation of points having a quadratic number of edges. Even if such
a configuration can occur for a subset of the sample points, the number of sample points involved in this
configuration is . Therefore, the number of Delaunay edges involved in this configuration is .
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4.3 Delaunay edges joining the -regular and the -singular zones

In this section, we count the Delaunay edges with one endpoint in the -regular zone and the other in the -singular
zone.

We first introduce a geometric construction of independent interest that will be useful.

Let be a plane in and be a finite set of points. We assign to each point of the region
consisting of the points for which the sphere tangent to at and passing through encloses no point of
(see Figure 6). In other words, if denotes the radius of the sphere tangent to at and passing through
, we have:

Figure 6: The cell is the set of contact points between a plane and a sphere passing through and tangent
to . The part of the paraboloid on the lower envelope of the paraboloids projects to the cell .

It is easy to see that the set of all , , is a subdivision of which we denote (see Figure 9). The
diagram is a multiplicatively-weighted power Voronoi diagram. Let be the paraboloid of revolution
with focus and director plane . The paraboloid consists of the centers of the spheres passing through and
tangent to . Assume that the points are all located above plane . If not, we replace by the point symmetric
to with respect to , which does not change . Let us consider the lower envelope of the collection of
paraboloids . Cell is the projection of the portion of the lower envelope contributed by (see
Figures 6 and 9).

Consider the bisector of , i.e. the points such that . is the
projection on of the intersection of the paraboloids and . As easy computations can show, the bisector

of and is a circle or a line (considered as a degenerated circle). Let

Since is a circle, is either a disk, in which case we rename it , or the complementary set
of a disk . We therefore have

It follows that the edges of are circle arcs that we call convex or concavewith respect to depending
whether the disk (whose boundary contains ) is labelled or (see Figure 7). Observe that the
convex edges of are included in the boundary of the convex hull of .

Proposition 10 The number of Delaunay edges with one endpoint in the -regular zone and the other in the -
singular zone is at most :
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Figure 7: The bold edges are the convex edges of the shaded cells. The edge which is concave with respect
to is convex with respect to . The convex edges of a cell lie on the boundary of its convex hull.

Proof. Let be a facet of and the supporting plane of . We bound the number of Delaunay edges with
one endpoint in and the other in , i.e. the number of Delaunay edges joining the -singular zone
and the -regular zone of .

We denote by the restriction of the subdivision introduced above to , and, for , we denote by
the cell of associated to .

We first show that the Delaunay neighbours of that belong to the -regular zone of belong to .
Consider a Delaunay edge with , and . Let be an empty sphere passing
through and , its center (see Figure 8). By Lemma 5, intersects in a circle whose radius is less than
. For a point on the segment , we denote by the sphere centered at and passing through . Because
encloses , is an empty sphere. For , intersects . For , does not intersect . Consequently,
there exists a position of on for which is tangent to . Let for such a point . We have

and . Hence, . Now, let us consider a Delaunay edge with
. Applying Lemma leads to .

Figure 8: Every sphere passing through and contains a sphere passing through and tangent to .

Let be the number of Delaunay edges between and . We have, using the fact that is a subdivision
of and Proposition 4 :
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Let us bound . Given a cell , we bound the length of its convex edges. By summing
over all , all edges in will be taken into account.

The convex edges of are contained in the boundary of the convex hull of . Since , the length of
the boundary of the convex hull of is at most the length of . Consequently:

Since, by Proposition 4, , we have:

By summing over all the facets, we conclude that the total number of Delaunay edges with one endpoint in the
-regular zone and the other in -singular zone is at most :

4.4 Main result

We sum up our results in the following theorem :

Theorem 11 Let be a polyhedral surface and a -sample of of size . The number of edges in
the Delaunay triangulation of is at most:

Notice that our bound holds for any . It should be observed also that the bound does not depend on the
relative position of the facets (provided that their relative interiors do not intersect). In particular, it does not
depend on the dihedral angles between the facets. Notice also that the bound is not meaningful when ,
which is the case of the quadratic example in Figure 5.

5 Conclusion

We have shown that, under a mild sampling condition, the Delaunay triangulation of points scattered over a fixed
polyhedral surface or any fixed pure piecewise linear complex has linear complexity. Therefore, we (partially)
answered an old question of Boissonnat [8]. Our sampling condition does not involve any randomness (as in the
work by Golin and Na [20]) and is less restrictive than Erickson’s one [18].

Although the sampling condition has been expressed in a simple and intuitive way, the linear bound holds under a
more general setting. Indeed, all we need for the proof is to subdivide the surface in two zones, an -regular zone
where one can apply Lemma 5 and an -singular zone containing points.

As mentionned in the introduction, Erickson has shown that the Delaunay triangulation of points distributed on
a cylinder may be . To understand where our analysis fails for such an example, one has to remember
that our proof relies on Lemma 5 which states that empty balls intersect polyhedral surfaces in disks whose area is
smaller than , which is not the case anymore in Erickson’s example.

In our result, the dependence on is quadratic. We let as an open question to see if it be improved to linear ?
Another open question is of course to consider the case of smooth surfaces. The lower bound obtained
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by Erickson for cylinders show that a linear bound does not hold for arbitrary surfaces. We conjecture that, for
generic surfaces, the complexity of the Delaunay triangulation is still linear. We say that a surface is generic if
1. its maximal balls intersect at a finite number of so-called contact points, and 2. the intersection of with the
union of the maximal balls with only one contact point form a set of curves of finite length on . In particular,
generic surfaces cannot contain spherical nor cylindrical pieces.
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Figure 9: Decomposition of a facet into cells for different set of points . The lower envelope of the paraboloid
has been represented. The red spheres represent the points of and the red lines materialize the

projection of the points of on the plane . The bisector of two points is a circle. The projection of on do
not belong necessary to its cell. The decomposition of can have a quadratic number of edges.
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