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Abstract

In this paper, the problem of reconstructing a surface, given
a set of scattered data points is addressed. First, a precise
formulation of the reconstruction problem is proposed. The
solution is mathematically defined as a particular mesh of
the surface called the normalized mesh. This solution has
the property to be included inside the Delaunay graph.

A criterion to select boundary faces inside the Delaunay
graph is proposed. This criterion is proven to provide the
exact solution in 2D for points sampling a r-regular shapes
with a sampling path € < 0.38r. In 3D, this results cannot
be extended and the criterion cannot retrieve every faces.
Some heuristics are then proposed in order to complete the
surface.

1 Introduction

This paper addresses the problem of meshing a surface only
known by an unorganized set of points. Such a problem
may occur in many domains including pattern recognition,
computer vision, and graphics. Meshing the boundary of
an object is useful to study its geometry (volume, axes of
inertia, area), to decide if a point is inside or outside the
object, to provide a smooth interpolation of the boundary,
or to display the object.

The initial data is a set of points with no structure, which
sample a surface. Such points can be measured directly on
the boundary of an object using 3D sensors or laser range
scanning systems. They can also result from the segmenta-
tion of a 3D volumetric image. Starting from this mere set
of points only known by their coordinates, we are interested
in building a mesh induced by the proximity relationships of
the points on the surface.

To solve this problem, it is common to compute first a
neighbourhood graph of the data points and then to re-
strict the search for a mesh inside this neighbourhood graph.
Many neighbourhood graphs for which efficient algorithms
from computational geometry exist have been tried. In [1],
the k-nearest neighbour graph is used to estimate a signed
distance to the surface. After this step, a set of cubes cross-
ing the surface is computed and a marching-cube algorithm
provides the searched triangulation. Another appealing idea
consists in starting from the convex hull of the points and
to sculpture this convex hull until it passes through all the
points [2]. The sculpture of the convex hull can be simplified
by computing the Delaunay graph [3]. Thus, the sculpture
consists in removing tetrahedra located on the current sur-
face in such a way that at each step, the current surface
remains a polyhedron. A drawback of such an approach is
that no change of the topology is allowed and consequently,
it is impossible to get a surface formed of several connected
components or having holes. The Voronoi graph is some-
times used to get additional information on the skeleton of

the object [4, 5, 6].

More complex graphs have also been introduced like a-
hulls and a-shapes [7, 8]. a-shapes are a generalization of
the convex hull of a point set. An a-shape is a polytope
surrounding the set of points. The parameter « controls the
maximum “curvature” of any cavity of the polytope. Several
a-shapes with different values of « are presented in figure 1.
The choice of the parameter a might be tricky.

Figure 1: a-shapes

Although a large amount of work has been done on this
topic, few theoretical results [9] exist mainly due to the dif-
ficulty formalizing the problem. In most papers, no mathe-
matical definition of the searched mesh is given. In section
2, we try to fill this deficiency by formulating the problem
more precisely. In particular, the searched solution is defined
as a particular mesh of the surface called the normalized
mesh. In section 3, a method is proposed to build this solu-
tion. The convergence of our approach is proven in the two-
dimensional case for r-reqular shapes. Unfortunately, the
demonstration cannot be extended to the three-dimensional
case. It results that some faces of the surface cannot be re-
trieved by our algorithm. In section 4, some heuristics are
proposed to complete the surface.

2 Problem statement

In this section, definitions are given in three-dimensional
space but they can easily be extended in a space of any
dimension. d represents the Euclidean distance and X des-
ignates the closure of the set X.

2.1 General case

Let S be the unknown surface to mesh and E a finite set of
points located on S. To measure the quality of the sample,
we introduce the notion of sampling path:

Definition 1 (Sampling path) E C S is said to sample
S with the sampling path € if any sphere with radius € and
center in S contains at least one sample point in E (Fig. 2).

The end of this section is concerned with building up a
normalized mesh from certain elementary spaces called cells.



. . . ..
.
. . .
.
. L] .
. Ll
. . S%ese®
. . .
L4 .
. .
A4 .
. .
.
e

Figure 2: (a) Curve. (b) Sample of the curve with sampling
path e. (c) Disks containing the curve.

A cell is just a generalization to an arbitrary number of
vertices of a simplex.

Definition 2 (cell) A k-cell [a1,---,ax] is the set of points

Zle Aiai, where a1,...,a, are points, and the \; are real
numbers such that A\; > 0 for all i and Ele Xi = 1. The
points ai,...,an are called the vertices of the cell.

The normalized mesh is a particular mesh of the surface
S defined as a union of cells with vertices at the data points
E:

Definition 3 (Normalized mesh) The normalized mesh
of S associated to E is the set of cells [p1,-- -, pr] withp; € E
for which ezxists a point m € S such that d(m,p1) = --- =
d(m,pr) = d(m, E).

Figure 3: Construction of the normalized mesh from the
Voronoi graph of the sample points.

By definition, the normalized mesh is included in the De-
launay diagram of E. It is formed of the Delaunay elements
(edges, faces and simplices) whose dual intersects the surface
(Fig. 3). Generally, the normalized mesh is formed of edges
in 2D and triangular facets in 3D but it may also happen
that the normalized mesh has a non-zero thickness if it in-
cludes a cell with not linearly independent vertices. One can
remark that if F samples S with the sampling path €, then
each face of the normalized mesh has diameter lower than
2€.

Normalized mesh are particularly attractive as they pro-
vides a piecewise linear interpolant of the surface that con-
verges to the surface when the sampling path tends to 0:

Proposition 1 (Convergence) Let S be a surface and E,
be a sample of S with sampling path % Let Sy, be the nor-
malized interpolant of S associated to E,,. Then:

lim S, =S

n— o0

Using the previously defined notions, it is now possible
to give a precise formulation of the initial reconstruction
problem. Given a surface S and a set of points E located on
S, the problem can be expressed as finding the normalized
mesh of § associated to E. Such a mesh provides a natural
solution. It is a piecewise linear interpolant of the surface
which tends to S when the sampling path tends to 0.

2.2 r-regular shapes

In order to simplify the search for the normalized mesh, we
will assume in the next section that S is the boundary of an
r-regular shape.

Definition 4 (r-regular shape) Let By be the unit ball.
A shape X is said to be r-reqular if it is morphologically
open and closed with respect to a disk of radius r > 0:

X =(XO6rBy) ®rBy=(X®rBy)©rBy
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Figure 4: r-regular shape

The concept of r-regular shapes was first introduced in the
field of mathematical morphology [10]. Since the parameter
r can be arbitrarily small, r-regular shapes offer a relevant
model to represent objects arising in image analysis [11].
r-regular shapes have many nice geometric properties (Fig.
4):

1. The boundary of an r-regular shape has at each point
a tangent and a radius of curvature greater or equal to
r.

2. The boundary of an r-regular shape divides any ball
with radius 2r and center on the boundary in exactly
two connected componants.

3. From the previous property, it follows that if € < 2r,
the normalized mesh provides a tiling of the surface. In
other words, the normalized mesh retains all the topo-
logical properties of the surface.

4. In the two-dimensional space, any circle passing
through three distinct boundary points has radius
greater than r. This property will be crucial in the
next section to validate our algorithm. Unfortunately,
this property has no 3D equivalent.

3 Characterizing boundary faces

In this section, our goal is to characterize faces of the nor-
malized mesh. From the previous section, we know that this
search can be restricted inside the Delaunay diagram of the
sample points. Therefore, the adressed problem is to de-
termine which faces of the Delaunay diagram belong to the
normalized mesh. Afterwards, a Delaunay sphere refers to a



Figure 5: Angle formed by Delaunay disks

sphere circumscribed to a Delaunay simplex. The surface is
assumed to be the boundary of an r-regular shape.

To detect boundary faces, one can take advantage of the
following remark. In 2D, Delaunay discs tend to maximal
discs of the object and of the complement of the object when
the sampling density tends to 0 [12]. Consequently, Delau-
nay discs become tangent to the boundary (Fig. 5). In
3D, to evaluate the belonging of a Delaunay triangle to the
surface, we are going to measure the angle formed by the
two Delaunay spheres passing on both sides of this triangle.
More precisely, if T is a Delaunay triangle, ¢i and c2 the
centers of the two Delaunay spheres passing through 7" and
p a vertex of T', we define (Fig. 5):

§(T) == — cipca

Broadly speaking, when the angle §(7') is near 0, there is
every chance that the triangle 7' belongs to the boundary.
On the contrary, if this angle is near 7, the triangle has every
chance to be inside or outside the object.

Let us remark that an analogous criterion was proposed
in [3]. The distance from a face T to the Delaunay sphere
passing through T was used in order to measure the belong-
ing of this face to the surface. One advantage of our criterion
is to be symmetric with respect to the boundary.

To reconstruct the surface, we are going to consider the
set of triangles T for which §(T") < do. This set is called
afterwards S, .

3.1 2D case

In 2D, S5, is a set of edges selected from the Delaunay
diagram of E. The main result of this paper is that if
€ < sin(g)r, then the set of edges Sz is the normalized
mesh of S associated to the points E. To demonstrate this
result, one has first to establish the following proposition:

Proposition 2 Let X be an r-reqular shape and E be a
sample of 0X with sampling path €. For each edge (pq) of
the Delaunay diagram of E, we have :

1. if (pq) belongs to the normalized mesh and e < %, then
5(pg) < 3

2. if (pq) does not belong to the normalized mesh and € <
sin(%)r, then 6(pg) > 5

Proof. A complete proof may be found in [13]. In this
paper, we only demonstrate the first point of the proposition.
The second point can be established in a similar way.

Let (pg) be an edge of the normalized mesh (Fig. 6). Let
B(z1,7r1) and B(z2,r2) be the two Delaunay disks intersect-
ing at points p and q. If m designates the middle point of

[pq], we have :

—

§ =7 — Z1pm — mpzs
p
IR

Figure 6: Illustration of the proof.

A disk intersecting the boundary of an r-regular shape in
3 distinct points has radius greater than r. Consequently,
ri > r and ry > r. Furthermore, edges of the normalized
mesh have length smaller than 2¢. It follows that d(p,m) <
€. Thus :

d(p,m)

cos(xipm) = "
1

€
-
dlpm) €
-

cos(mpxz2) = "
2

1
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Consequently, 21pm > T mpxs > Fandd < 3 < 3.
Proposition 3 Let X be an r-reqular shape and E be a
sample of 0X with sampling path €. If e < sin(§)r, then
S% is the normalized mesh
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Figure 7: Sample points, Delaunay triangles and normalized
mesh.

The beauty of this result lies in the fact that there is no
need to know the two parameters r and € in order to compute
the normalized mesh. Moreover, the sampling path has no
need to be close to zero in order to find the correct result. It
is enough that the sampling path € and the constant r char-
acterizing the searched shape have approximately the same



order. The computational time is also very attractive. The
detection of boundary faces requires only the computation of
a Voronoi graph. Given n sample points in a N-dimensional
space, the computational time is O(n log n+nlN/?] ). Figure
7 illustrates the robustness of the proposed method on sev-
eral examples. The method was able to detect curves even
if not closed and even when the points were not regularly
spaced on the curves.

3.2 3D case

Figure 8: In 3D, a Delaunay sphere may intersect the surface

In 3D, contrary to the 2D case, it may happen that some
Delaunay spheres intersect the boundary without being tan-
gent to it as illustrated in figure 8. This new phenomenon
makes it impossible to minorate the radius of the Delaunay
spheres. Consequently, proposition 2 cannot be generalized.

Figure 9: Some boundary faces are missing.

Experimentally, one can remark that the set Sz does not

2
capture all faces of the normalized mesh (Fig. 9). Some
triangles are missing and the surface has more or less holes,
depending on the distribution of sample points (Fig. 10).
Nevertheless, as the proposed criterion does not produce er-
roneous triangles, one can start from this first approximation
of the surface in order to find the solution.

Figure 10: The number of missing triangles depends on the
distribution of sample points.

4 Closing the surface

In this section, two different heuristics are proposed in order
to complete surfaces from the previous section. Afterwards,
the term “surface” refers to the set S%.

4.1 Triangulation of the border

The border of the surface is formed of polygons. A first idea
is to triangulate each polygon of the border independently
from the others (Fig. 17). Given a simple polygon on the
border of the surface, a triangulation of this polygon can be
performed by adding one after the other Delaunay triangles
sharing two or three edges with this polygon. If the trian-
gulation fails, the surface cannot be closed by this method.
Border polygons that are not simple must first be splitted
up.

This approach has the advantage to make absolutely no
assumption on the distribution of sample points. It deals
with closed as well as open surfaces. Nevertheless, as il-
lustrated on figure 11, it may sometimes not provide the
expected solution. This approach has not yet been imple-
mented.

Figure 11: Two possible triangulations of the border.

4.2 Tessellation of the volume

In this section, a volume-based approach is proposed. In-
stead of computing directly the surface, we first try to find a



collection of objects whose boundary provides the searched
surface. This approach assumes surfaces to be closed, and
consequently, is less general than the previous one.

Figure 12: Illustration of the algorithm in 2D.

The main idea is to merge Delaunay tetrahedra until space
is partitionned into a satisfactory number of objects. Our
algorithm aggregates Delaunay tetrahedra as follows :

1. INITIALIZATION. Delaunay tetrahedra and the comple-
ment of the convex hull of the sample points form the
initial set of objects. Delaunay triangles are put in a list
L that is sorted according to the diameter of triangles.

2. MERGE. While £ is not empty, the triangle T" having
greatest diameter is taken out from L. If T separates
two different objects O1 and O2, those two objects are
merged providing that :

e no triangle from Sg disappears,

e the merge does not isolate sample points inside
O1 U Os. In other words, after the merge, every
sample point must still belong to the boundary of
at least one object (Fig. 13).

authorized
—
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Figure 13: Rules to merge objects.

As soon as two objects share an important number of
boundary triangles, they cannot merge anymore. Rules cho-
sen to merge tetrahedra differ from rules used in [3] to sculp-
ture the convex hull. In particular, more operations are per-
mitted in order to allow topological change of the surface.
The result is a set of closed surfaces of arbitrary topology.

If n designates the number of sample points and k the
number of Delaunay faces in the list at the beginning of the
algorithm, the complexity is O(klogk + kn?). Indeed, the
sort is in O(klogk). To detect a possible merge between
two objects, it is necessary to consider the neighbours of

each sample point, which can be n in the worst case. Conse-
quently, the complexity of the algorithm is O(n®) in 2D and
O(n*) in 3D.

Figure 14 presents some results. The number of objects
detected by our algorithm remains small. The percentage
of tetrahedra not belonging to the main components is less
than 0.5%.

Figure 14: Uncomplete surface from the previous section.
First, second and other components resulting from the merge
of Delaunay tetrahedra.

Figure 15: Sample points, reconstructed object, initial and
simplified skeleton.

One advantage of this approach is that the skeleton of
objects can easily be deduced (Fig. 15). The skeleton is
a very famous representation of objects from image analy-
sis and computer vision. It is a thin figure which retains
all the topological properties of the object. It is useful to



describe and analyse objects. In 3D, it is made up of sur-
faces and curves passing through the middle of the object.
The skeleton can be computed by considering the dual of
the Delaunay tetrahedra included in the object.

5 Conclusion

In this paper, a precise formulation of the reconstruction
problem has been given. We defined the solution as a par-
ticular subset of the Delaunay diagram. A first method has
been proposed to construct this solution. The convergence
of this method has been established in 2D. For 3D objects,
the method does not detect every boundary face. Two meth-
ods have been proposed for completing surfaces and detect
missing faces.

A weak point of our study is that points must be located
on or near the boundary of the objects. In the case of real
data, this assumption cannot always be fulfilled. Sample
points may form a dense cluster around the objects. A new
formulation of the reconstruction problem must then be pro-
posed. Current research is directed towards this direction.
An idea would be to combine a-shapes and the set of bound-
ary faces detected with the criterion § (Fig. 16). Indeed, the
two approaches seem to complement one another. While a-
shapes can capture noisy set of points, our approach enables
to connect points located on curves and surfaces.

Figure 16: comparison of a-shape and S%.
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Figure 17: Sample points, reconstructed surface and border
of the surface.



