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Skeletons provide a synthetic and thin representation of ob-
jects. Therefore, they are useful for shape description. Recent
papers have proposed to approximate the skeleton of continu-
ous shapes using the Voronoi graph of boundary points. An
original formulation is presented here, using the notion of poly-
balls (we call polyball any finite union of balls). A preliminary
work shows that their skeletons consist of simple components
(line segments in 2D and polygons in 3D). An efficient method
for simplifying 3D coniinuous skeletons is also presented. The
originality of our approach consists in simplifying the shape
without modifying its topolegy and in including these modifi-
cations on the skeleton. Depending on the desired result, we
propose two strategies which lead to either surfacical skeletons
or wireframe skeletons, Two angular criteria are proposed that
allow us to build a size-invariant hierarchy of simplified
skeletons. 1997 Academic Press

1. INTRODUCTION

The notion of skeleton was first introduced by Blum [I].
The skeleton of an object is a thin figure centered in the
shape which summarizes its general form. It consists of
branches associated with the protrusions of the shape and
loops associated with its holes. The skeleton provides a
useful tool for shape description and is a well-known trans-
formation of image analysis and shape recognition.

Numerous methods have been proposed in order to ex-
tract the skeleton. They can be classified in three main fam-
ilies:

» Exact methods. Finding the exact skeleton of an object
is a complex problem. So far, this problem has been solved
for very few objects. In [2], Lee has proved that the exact
skeleton of a polygon was a subgraph of the generalized
Voronoi graph of its boundary.

» Discrete methods. The object is stored in a binary
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image. The skeleton is redefined in a discrete space. It
is computed using lools of discrete geometry (homotopic
thinnings, medial line extractions from distance maps)
[3-8]. The result is a discrete skeleton, in other words, a
set of 8-connected pixels in an image. Some 3D extensions
have been proposed in the literature [2-13). More recently,
it has become of interest to study skeletonization of 2D
grey-scale images in order to avoid the segmentation step
[14, 15].

» Continuous methods. The object is defined by a sel
of points that samples its boundary. Such data are often
available. For instance, 3D surface points can easily be
deduced from a collection of cross sections or by interactive
acquisition using some 3D (optic, electromagnetic, radar)
locator device. Recently, it has been proposed to use the
Voronoi graph of the sample points in order to approxi-
mate the skeleton [16-19]. Indeed, the computational cost
of the Voronoi graph of a reasonable sct of points is no
longer prohibitive [20-22]. Furthermore, by using directly
the sample points, there is no need to perform any shape
digitalization. The term *“‘contintous methods” indicates
that, unlike discrete methods, points with real coordinates
arc manipulated.

This paper is concerned with the generation and simpli-
fication of 3D objects using continuous metheds. So far,
little rescarch has been done on 3D continuous skeletons
[23, 24]. Yet, due to the [ast development of medical data
acquisition, the analysis of real 31> data has become even
more important in image understanding than before.

An original formulatien of continuous methods is first
provided, based on the notion of the polyball. A polyball
designates a finite union of balls. In this paper, we prove
that the skeleton of a polyball can be constructed exactly
and that continuous methods consist in approximating
shapes with polyballs and the skeletons of shapes with
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maximal ball

FIG. 1. The skelelon is the locus of the centers of its maximal balls.

the skeletons of polyballs. The complexity of continuous
methods is related to the complexity of the Voronoi graph.

A well-known drawback of skeletonization is not to be
a continuous transformation. Thus, little noise on the
boundary makes some useless barbs appear in the com-
puted skeleton. In order to overcome this problem, we
propose efficient methods to simplify noisy 3D skeletons.
Small modifications of our simplification process provide
either surfacical or wireframe skeletons.

This paper is organized as follows. In Section 2, the
notions of skeleton, sampling, and polygonal approxima-
tion are introduced. The definitions of the Voronoi graph,
the Delaunay tessellation, and the Gabriel graph are re-
called. Section 3 deals with the general problem of approxi-
mating the skeleton of a continuous shape. Two theoretical
results are established. First, we find an equivalence condi-
tion for 2D continuous methods. Second, the skeleton pro-
vided by continuous methods is related to the skeleton of
a particular polyball. In Section 4, different strategies to
simplify noisy skeletons are proposed.

2. NOTATIONS AND DEFINITIONS

Afterward, RY designates the Euclidean N-dimensional
space and d the Euclidean distance. For any set of points
F € RN, 9F denotes its boundary and F° its complement.
Where needed, X will be used to denote a general continu-
ous object, P a polygonal object, and E a finite set of points.

2.1. Shape Representations

Skeleton. The skeleton SK({X) of an object X € R¥ is
the locus of the centers of the maximal balls included in
X {Fig. 1). A ball B included in X is said to be maximal
if there exists no other ball included in X and containing B.

Algorithms for computing the skeleton depend on the
object representation. Continuous approaches are charac-
terized by having as input a description of the boundary
of the shape. This description can be either a sampling of
the boundary or a polygonal approximation of the shape,
as described in the following paragraphs,

Sampling. A sampling E of the boundary of a shape
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X is a finite set of points located on the boundary of X.
The sampling density of £ is the number w:
L= E).
v G B)
The sampling £ converges to the boundary of the shape
as the sampling density becomes infinite. Samplings of the

boundary can be deduced from the segmentation of im-
ages; 3D locator devices also provide such data.

Polygonal approximation. Rather than describing the
boundary of a shape by a sampling of its boundary, it
will be sometimes more convenient to consider polygonal
approximation of the shape. A polygonal approximation
P of an object X designates a region of the space delimited
by simple polygons in 2D and simple polyhedra in 3D.
The vertices of the pelygons and polyhedra sample the
boundary of the shape. In computer graphics and geomet-
ric modeling, shapes are often represented by polygonal
approximation. Such representation can result from the
segmentation of 3D data using, for instance, a deformable
contour model or a marching cubes algorithm. With the
advent of laser scanning systems and 3D reconstruction
techniques, complex pelygonal approximation are rapidly
becoming commonplace.

2.2. Neighborhood Graphs

In this section, the definition and main properties of the
Voronoi graph, the Delaunay tesselation, and the Gabriel
graph are briefly recalled. Those graphs will turn out to
be useful in the next section to compute and characterize
the skeleton of an object.

Voronoi Graph. Let E be a finite set of points in RV
and p a point of E. The Voronoi region of the point p is
defined as the set of points of R" closer to p than to any
other clement of £. More formally,

Vip)={me R, d(m,p) =d(m, E)}.

The Voronoi regions are convex polygons in 2D and con-
vex polyhedra in 3D. The Voronoi graph Vor(E) of E
consists of the boundaries of the Voronoi regions of £
(Fig. 2a),

a b c

FIG. 2.
graph.

(a) Voronoi graph; (b) Delaunay triangulation; (¢) Gabriel
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vor(£) = | avip).

PEE

The Voronoi graph of » points can be computed in
O(n log n + n'™?Y in an N-dimensional space [25]. A
comprehensive treatment of the Voronoi graphs may be
found in [26, 27, 25].

Delaunay Tessellation. The dual of the Voronoi graph
is a tessellation of the convex hull of E named the Delaunay
tessellation (Fig. 2b). It can easily be deduced from the
computation of the Voronoi graph. It is made up of simpli-
ces whose circumscribed balls contain no other points of
E. If one assumes that there is no degenerate cases (no
four points of E are cocircular in 2D and no five points of
E are cospherical in 3D), the simplices are triangles in 2D
and tetrahedra in 3D.

Afterwards, the Delaunay tessellation of an s-point set
E is denoted Del(E). As the Voronoi graph, it can be
computed in O(nlog n + n'™?Y) in an N-dimensional space.

Gabriel Graph. The Gabriel graph is another famous
graph from computational geometry [28]. The Gabriel
graph GG(E) of a set of points £ & R" is the set of
simplices |p;, p2, . . ., paf such that the smallest ball passing
through the N points py, pa, .. ., py containg no points of
E in its interior (Fig. 2c).

The Gabriel graph of £ can be constructed by removing
from the Delaunay tessellation of E each N-face not inter-
secting its dual Voronoi edge. Consequently, the Gabriel
graph of # points can be computed in O(n log n + #/"'%))
in an N-dimensional space.

3. SKELETON APPROXIMATION

Recently, algorithms using the Voronoi graph of points
sampled along the shape boundary have become of interest
to compute the skeleton. The goal of this section is to
review and compare different ways to use the Voronoi
graph of boundary points in order to approximate the
skeleton.

In the following discussion, X designates a continuous
shape and P,, a polygonal approximation of X. The vertices
£, of P, sample the boundary of X with the sampling
density w. The considered space is either 2D or 3D.

The existing methods are all based on the same general
scheme. First, the Voronoi graph Vor(E.,) is computed.
Secondly, a subgraph is extracted from this Voronoi graph
in order to approximate the skeleton of X. Differences
between methods appear when choosing which subgraph
should best approximate the skeleton. One can define the
approximate skeleton as (Fig. 3%

+ the Voronoi vertices included in X [29],
+ the Voronoi elements included in X {30, 31],
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+ the intersection of the Voronoi graph with the shape
X [17],
« the dual of a polygonal approximation P, [18).

These methods are enumerated in a logical order and
not a chronological order. Indeed, the first three methods
are related by an inclusion relationship. These methods
are described and compared in the following sections. They
have been experimented in 2D as well as in 3D space. Qur
main contribution concerns two points;

+ An original formulation of the second method is pro-
posed. In this formulation, the approximate skeleton is
interpreted as the exact skeleton of a union of Delaunay
balls.

* A condition is established under which the second and
fourth methods arc equivalent in 2D space.

Before describing the different methods, one has first
to enumerate which properties a “good” approximate skel-
eton should verity:

1. Convergence. As the sampling density tends to infin-
ity, the approximate skeleton should converge to the ex-
act skeleton.

2. Homotopy. The approximate shape and the approxi-
mate skeleton should have the same class of homotopy.
In 2D space, it means they should have the sane number
of connected components and for each component, the
same number of holes.

3. Reversibility. It must be possible to recover the ap-
proximate shape using the approximate skeleton.

3.1. First Method (SK,): Using the Inner
Voronoi Vertices

Schmitt [29] has introduced a mathematical framework
in which he has proved that, if 4 X is an orientable manifold
of smoothness C? at least, then the Voronoi vertices of
Vor(E,,) tend to the skeleton of the shape and its comple-
ment. Due to this result, a natural way to approach the
skeleton is to take the set of Voronoi vertices included in
the shape (Figure 3e):

Ski(X, E,) = {v}.

vEX. v vertex of Vor( L)

Indeed,

lim Sk, (X, E,,) = Sk{X).

W %

Theoretically speaking, this work shows the relationship
between Voronoi graphs and skeletons in a space of any
dimension. But, in practice, the skeleton Sk, is of poor
help in order to describe shapes as it is a set of disconnected
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FIG. 3. Skeleton approximation: (a) continuous shape; {b) sampling of the boundary and corresponding Voronei graph; (c) inner Delaunay
triangles. One can define the approximate skeleton as: (e) the Vornonai vertices included in the shape: (f) the Voronoi elements included in the
shape; (g) the intersection of the Voronoi graph with the shape; (h} the dual of the inner Delaunay triangles. The skeleton defined in (f} is the

exact skeleton of the union of balls represented in {d).

points, Consequently, it contains no information on the
topology of X. In order to overcome this problem, a possi-
ble idea is to add to Sk, some elements that connect the
inner Voronoi vertices, as described in the second method.

3.2. Second Method (8k,): Using the Inner
Voronoi Elements

In this method [16], the skeleton is defined as the Voro-
noi elements that are completely included in the shape
(Fig. 3f),

Sk X, E.) = J F.

FCX, Felement of Vor(E, )

A Voronoi element can be a point or a straightline segment
in 2D and a point, a straightline segment, or a polygon in
3D. 1t ensues that the approximate skeleton is a thin shape
of the considered space. A convergence theorem has been
established by Brandt for r-nice shapes. An r-nice shape
is morphologically open and closed with respect to a disk
of radius r and has at most a locally finite number of
curvature inflections. For these shapes Brandt has proved
in 2D that

lim Sk,(X, E,,) = Sk({X).

W®

The convergence theorem is illustrated in Fig. 5,

Interpretation. 'The skeleton computed by this method
has a very interesting property that helps to understand
why inner Voronoi vertices should be connected by inner
Voronoi elements. Indeed, it can be interpreted as the
exact skeleton of a finite union of balls Y. This union
of balls is an approximation of the continuous shape X,
constructed from the sample points E,,. Let a Delaunay
ball be a ball circumscribed about a Delaunay simplex. Y,
is made up of the Delaunay balls of FE,, whose centers
belong to X (Fig. 3d). We have

Skx(X, E,) = Sk(Y..).

This result derives from the general form of the skeleton
of a finite union of balls. In Appendix A, it is proved
that the skeleton of any union of balls can be constructed
exactly. It is made up of line segments in 2D and polygons
in 3D.

Generally speaking, spherical representations have of-
ten been studied because they provide simple representa-
tions for graphical display and object modeling. In particu-
lar, they are well adapted to represent molecular surfaces
[32]. In [33], spheres are used to define the isosurfaces of
deformable objects. In [34], a collection of overlapping
spheres is computed in order to make easier graphical
representations. The possibility of computing efficiently
the volume and other parameters of union of balls is stud-
ied in [35]. This paper provides another reason to use
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b

FIG. 4. [Influence of the sample points on the skeleton computation:
(a) union of balls computed from different sampling of the boundary;
(b) corresponding skeletons,

spherical representations: the skeleton of a finite union of
balls can be exactly constructed.

Sampling Influence. The skeletonization method de-
scribed in this section consists in first approximating the
shape X with a unicn of balls ¥, and then in approximating
the skeleton of X with the exact skeleton of Y,.. For a
given sampling density, different samplings of the bound-
ary provide different unions of balls (Fig. 4a). However,
the computed skeleton remains stable (Fig. 4b). The initial
location of the sample points on the boundary is of little
importance for the method,

Rather than using the exact skeleton of an approximat-
ing union of balls ¥,,, one may ask why not use directly
the exact skeleton of the polygonal approximation P,.
Indeed, it can also be constructed exactly with straightline
segments and pieces of parabola. Such an approach has
several drawbacks. To each convex vertex of the polygon
is associated a branch on the skeleton. Consequently, the
method is very sensitive to the location of the sample points
on the boundary and does not converge when the sampling
density tends to infinity.

3.3. Third Method (Sks): Intersection of the Voronoi
Graph with the Shape

Ogniewicz [17] defines the discrete Voronoi medial axis
as the intersection of the Voronoi graph with the shape

(Fig. 3g),
Ski(X, E,) = XN Vor(E,).
Sks is an overset of Sk,. The only difference is that some

peripherical straightline segments are artificially added to
Sk;. These segments are terminated by points located on
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the boundary of X which have no significance in the compu-
tation of the skeleton.

34. Fourth Method (Skp): Using the Dual of the Shape

The method described in this section works on a polygo-
nal approximation P, of the shape. Boissonnat [18] was
the first to notice that if the condition &P, C Del(E,) is
verified in 2D then, one could distinguish two types of
Delaunay triangles, inner triangles lying inside P,, and par-
titioning P,, and outer triangles lying outside P, and parti-
tioning its complement (Fig. 3c). A 3D extension of this
remark is straightforward. In 3D, if 8P, C Del(£,), then
there exist only two types of Delaunay tetrahedra: inner
fetrahedra lying inside P, and partitioning P, and outer
tetrahedra lying outside P, and partitioning its comple-
ment, In other words, a Delaunay element (straightline
segment, triangle, or tetrahedron) cannot intersect the
boundary. One way to approach the skeleton is to consider
the dual of the shape (Fig. 3h):

Sko(P,) = Dual(P,).

Description.  The dual of the shape is an adjacency
graph of the inner simplices. In 2D, the dual is made up
of Voronoi vertices connected by straightline segments if
their associated simplices are adjacent. In 3D, the dual is
made up of Voronoi vertices, straightline segments, and
polygons. Straightline segments connect Voronoi vertices
whose associated Delaunay tetrahedra are adjacent. Poly-
gons are associated with inner tetrahedra that share a com-
mon inner Delaunay edge.

Duality. The main advantage of this approach is that,
by definition, the shape and the skeleton are dual. This
duality is extremely attractive as each operation on the
shape has an interpretation on the skeleton and vice versa.
Due to this duality, it is also possible to prove that the
shape and the skeleton are always homotopic. Further-
more, assuming that for each vertex of the approximate
skeleton, the dual inner simplex has been memorized, the
reversibility with P, is ensured. The original shape is recon-
structed by taking the union of inner simplices. Thus, the
shape is described by an exact and nonredundant decom-
position into triangles in 2D and tetrahedra in 3D.

Existence. A drawback is that the definition of the ap-
proximate skeleton Skg has a meaning as long as the bound-
ary of P, is included in the Delaunay tessellation Del( £,,).
Boissonnat refers to this condition as the contour confain-
ment condition. One might might this is a restrictive condi-
tion. But, Brandt and Algazi have proved in [16] that if
the shape X to skeletonize is r-regular and if the sampling
density w verifies w™' < 2r, then it is possible to sort the
sample points E,, and to construct a polygonal approxima-
tion P,, that verifies the contour containment condition.
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3.5. Comparison of the Different Methods

In this section, we compare the behavior of the four
methods previously described. The first three methods Sk, ,
Sk,, and Sk; are related by the following inclusions:

Sk\(X, E,) C Ska(X, E.) C Sky(X, E.,).

Two methods are particularly relevant: Sk, and Skg. In-
deed, Sk, ensures convergence toward the exact skeleton
and Skg preserves homotopy and reversibility. Afterward,
we shall limit ourselves to the comparison of Sk, and Sky.

If Sko and Sk; were equivalent, it would be possible to
have simultaneous convergence, homotopy preservation,
and reversibility. But, these two methods are not equiva-
lent in all cases.

Unlike Sk;, the approximate skeleton Sk, may not be
defined if the contour containment condition is not verified.
Furthermore, when the sampling points are sparsely lo-
cated on the boundary, Sky may go outside the shape. This
cannot happen with the approximate skeleton Sk, that is
forced to stay inside the shape by definition. On the other
hand, Sk; and the shape may not have the same class
of homotopy.

The difference between the two methods comes from
the fact that an inner Delaunay triangle may be associated
with an outer Voronoi vertex as illustrated in Fig. 3h and,
conversely, an outer Delaunay triangle may be associated
with an inner Voronoi vertex.

‘We have established that the two methods are equivalent
in 2D providing that the boundary of the polygonal approx-
imation P, is included in the Gabriel graph of the sample
points £,, (8P, € GG(E,.)). This condition is particularly
attractive as it does not depend on the sampling density,
which is generally not known. The equivalence between
the two methods has been established by first seeking un-
der which condition the skeleton Sk is forced to stay inside
the shape.

THEOREM 1. Let P € R? be a polygonal object and let
E be the vertices of P. If P is included in the Gabriel graph
of E then

4P C Del(P)
Sko{PYC P
Sko( POy C P-.
Thus, when the boundary of the polygonal approxima-
tion P, is included in the Gabriel graph GG(E,,), the con-
tour containment condition is verified and the skeletons

Sko(P,,) and Skqo( %) do not intersect the boundary. One
can immediately deduce the following theorem.

THEOREM 2. Let P € R? be a polygonal approximation

ATTALI AND MONTANVERT

of X and let E be the set of vertices of P. If P is included
in the Gabriel graph of E, then

Sky( P, ) = Sko(P)
Sk P<, E) = Sko( P9).

Therefore, the two methods Sky and Sk, arce cquivalent
in 2D as soon as the boundary of the polygonal approxima-
tion P, is included in the Gabriel graph of the sample
points E,,. Examples of polygonal approximation verifying
this condition are provided in Figs. 4 and 5. We have not
been able to extend the previous theorems to 3D space.
Experimentally, the two methods do not lead to the same
result, even for a high sampling density. A few peripherical
branches remain different. In the following section, the
skeleton Skq is preferred to Sk,.

3.6, Complexity

The computational time of the skeleton comes down to
the computational time of the Veronoi graph. Conse-
quently, it is in the worst case O{#n log ) in 2D and O(n?)
in 3D, where n is the number of sample points.

The complexity of the representation {(number of verti-
ces of the skeleton) is O(n) is 2D and O(#»?) in 3D. Never-
theless, we have noticed experimentally in 3D that the
number of Voronoi vertices of the skeleton does not ex-
ceed 8n.

4, SIMPLIFYING 3D SKELETONS

A drawback of the skeleton transformation is its lack
of continuity. Noise on the boundary of an object may
significantly change the aspect of its skeleton (Figs. 5¢ and
5f). A simplification algorithm is therefore necessary to
remove peripherical branches having no perceptual rele-
vance.

In 2D space, numerous methods, more or less sophisti-
cated, have been proposed in order to simplify discrete or
continuous skeletons. Simplification methods are gencrally
based on the same scheme: peripherical branches are short-
ened by removing end points one after the other while they
verity a removing criterion. By construction, the simplified
skeleton is a subset of the initial skeleton having the same
class of homotopy.

Different removing criteria have been proposed. One
can, for instance, measure the difference between the initial
shape and the shape reconstructed from the simplified skel-
eton [4, 36, 16, 37]. Branches are shortened as long as this
difference remains smaller than a fixed threshold. This
difference can be estimated by computing the Hausdorff
distance or the lost area between the initial shape and the
shape reconstructed from the simplified skeleton. More
complex criteria may be found in [38].
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FIG. 5.

Hlustration of the convergence theorem and sensibility to noise: (a) a “regular” continuous shape. From (b) to {e), the skeleton is

computed with 10, 50, 100, and 200 sampling points, (f} Noise on the sample points disturbs the sketeton.

This section is concerned with the simplification of 3D
skeletons. So far, very few methods have been proposed in
order to simplify 3D skeletons. Some extensions of discrete
approaches may be found in [9-12]. In [24], a 3D simplified
skeleton is used to describe the brain structure. But in this
case, the proposed simplification process is not convincing
as it only removes a small part of the skeleton vertices,

A drawback of existing simplification methods is that
they depend on thresholds that are difficult to find automat-
ically as they change with the objects. In this section, the
proposed removing criteria are size-invariant. The rele-
vance of a branch is measured with an angle. The greater
the angle, the more important the branch.

4.1. Methodology

In this section, the approximate skeleton is assumed to
be the dual of a polygonal approximation of the shape.
Our simplification process takes advantage of this duality
between the approximate shape P, and the approximate
skeleton Sko( P,,). It consists in simplifying P,, without mod-
ifying tts topology and in including those modifications in
the skeleton by duality.

Thus, during the simplification process, a simplex T is
removed from the current shape if the two following prop-
erties are verified:

1. the homotopy class of the shape is not modified when
T is removed,

2. Tis not revelant according to a certain criterion. Dif-
ferent removing criteria are discussed in Section 4.3.

By duality, when the simplex T is removed from the
current shape, its associated Voronoi vertex v and alt the
Voronoi elements passing through v are also removed from
the skeleton.

4.2. Preserving Homotopy

This section enumerates the simplices (triangles in 2D
and tetrahedra in 3D) whose delction does not alter the
homotopy of the current shape (Fig. 6). In the following,
an inner (resp. boundary) face or edge designates a face
or an edge encluded in (resp. on the boundary of) the
current union of tetrahedra.

In 2D, only one type of triangles can be removed. They
are associated with extremities of the skeleton and have
one inner edge and two boundary edges. They are called
hat triangles.

In 3D, two types of inner tetrahedra can be removed:

» Hat tetrahedra. They are characterized by three bound-
ary faces and one inner face. The consequence of their
deletion is to shorten a branch of the skeleton. The vertex
v associated with a hat tetrahedron is called an extremity
of the skeleton.

s Salient tetrahedra. They are characterized by two
boundary faces, two inner faces, and one inner edge (Fig.
6). The deletion of the salient tetrahedron 7 leads to the
removal of its associated Voronoi vertex v and of the Voro-
noi polygon passing through v. The vertex v is called a
border of the skeleton.

Thus, during the 3D simplification process, iwo elemen-
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hat triangle hat tetrahedron

7 ?
A ¢ 1 inner edge * 1 inner face
+ 2 boundary edges =2l + 3 boundary faces
Can be removed Can be removed
vy
salient tetrahedron)
* 2 inner faces
+ 2 boundary faces
+ 1 inner edge
Can be removed
+ 2 inner faces
* 2 boundary faces
+ no inside edge
Cannot be removed
' ™ ~
¢ 2 inner edges * 3 inner faces
¢ 1 boundary edge + 1 boundary face
Cannot be removed Cannot be removed
W,
s N ~
’. * 3 inner edges + 4 inner faces
' + no boundary edge « no boundary face
Cannot be removed Cannot be removed

AN J

FIG, 6. Simplices classification. Only hat triangles, hat tetrahedra,
and salient tetrahedra can be removed without altering the homotopy of
the current shape.

tary transformations may affect the current shape: the re-
moval of a hat tetrahedron and the removal of a salient
tetrahedron. The associated transformation on the skele-
ton are the removal of an extremity and the removal of a
border (Fig. 7). Consequently, two different strategies can
be considered to simplify 3D skeletons, which lead to either
surfacical skeletons or wireframe skeletons:

» In order to get a surfacical skeleton, one has to pre-
serve significant borders and remove possible branches.
To this end, hat tetrahedra must systematically be removed
as they imply unidimensional parts in the skeleton. On the
other hand, salient tetrahedra are removed if they verify
a removing criterion.

» To get wireframe skeletons, another strategy must be
chosen which preserves significant branches and remove
possible borders. In this case, the systematic removal of
salient tetrahedra is necessary. On the contrary, some hat
tetrahedra must be preserved.

4.3, Removing Criteria

In this section, we describe two removing criteria that
enable us to compute respectively surfacical and wireframe
skeletons. The proposed criteria are size-invariant.
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Surfacical Skeletons. The first criterion attempts to re-
move Yoronoi polygons forming spines created by small
boundary disturbances. In order to measure the relevance
of a border v of the skeleton, we consider the salient tetra-
hedron T associated with v. T shares two faces in common
with the current object boundary. Let a(v) denote the
angle between these two faces. The border v is removed
in the angle a(v) is less than a given threshold oy, For
instance, one can choose ap = @/3. This criterion is easy
to implement and gives good results when noise on the
boundary remains small (Fig. 8).

Wireframe Skeletons. A more sophisticated criterion is
used to get wireframe skeletons. It is inspired by the
method proposed by Ogniewicz [17] for 2D shapes. Before
describing our criterion in 3D, its principle is briefly ex-
plained in 2D space.

By duality, the shape and the skeleton are simplified
simultaneously. Thus, the removal of a skeleton branch
implies the removal of an area of the object made up of
Delaunay triangles. Afterwards, A{v) denotes the set of
Delaunay triangles one has to remove from the initial ob-
ject in order to remove the Voronoi vertex v (see Fig. 9).
The size of A(v) gives an indication on the location of the
vertex v within the skeleton, The more important A{v),
the more interval v is within the skeleton. An estimation
of the lacation of v can be provided by comparing the

current

skeleton simplified
skeleton

current

skeleton simplified
skeleton

current

skeleton
simplified
skeleton

FIG.7. Consequence of the removal of a hat triangle, a hat tetrahe-
dron, and a salient tetrahedron on the skeleton.
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f

FIG. 8. The shape is sampled by 1308 peints. Simplified skeletons of
order (a) ag = 0, (b) oy = 7/2, (¢) ayy = w, (d) &y, = 2, (e) pilling of the
simplified skeletons, (f) pilling of the simplified polygonal shapes.

perimeter p(v) of A(v) with the radius »(v) of the Delau-
nay disk centered on v, When the arca A(v) remains small,
the quantity p(v)/r(v) provides an approximation of the
solid angle under which v sees A(v). The vertex v is re-
moved if the quantity p(v)/r(v) is less than a given thresh-
old By. The value By = 7 gives excellent results.

When one tries to extend the previous criterion to 3D
space, the problem of how to extend the definition of A(v)
comes. In order to overcome this problem, we propose to
compute a 3D equivalent of the quantity p{v)} without
defining explicitly the set A(v). This computation is real-
ized in two steps:

1. Before the simplification, the value p(v) of any vertex
v of the skeleton is first initialized as follows: if the Delau-
nay tetrahedron associated to v shares k faces fi, ..., /i
with the boundary of the object, the value p(v} is set to

p(v) = area(f;) + - -+ + area(f;).

FIG. 9. The set of grey triangles must be removed from the initial
object before one can remove the Voronoi vertex v,
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e

FIG. 10,  {a) Polyhedral approximations. {b) Sampling poiats. (¢} Ap-
proximate skeletens. (d) Sucfacical simplified skeletons for a, = @/3. ()}
Wireframe simplified skeletons for 8, = 27.

2. During the simpliftcation, if the vertex v is removed
from the skelcton, the value p{v;) of each neighbor v; of
v still belonging to the skeleton is modified as

p;) < plv) +’%-

At cach step of the simplification, the total area com-
puted on the vertices of the current skeleton remains con-
stant. A vertex v of the skeleton is removed if the quantity
p{v)ir(v)isless than a given threshold 3y, for instance 27

Figure 10 illustrate some results of our simplification
methaods. The first shape is defined by 1191 sampling points.
the chromosome by 2290 points, and the vertebra by 2011
points. The computation for each object takes less thap
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30 s on an INDIGO RS4000 Silicon Graphics workstation.
The wireframe skeleton is remarkably representative. The
number of automatically detected branches is 4 for the
first shape, 4 for the chromosome, and 13 for the vertebra.

5. CONCLUSION

Obijects called polyballs have been studied. Their skele-
tons were proved to have simple components, which allows
their exact computation either in 2D or 3D space. For this
reason, polyballs are very interesting objects to represent
continuous shapes. A complete review of continuous meth-
ods was presented in Section 4 and an original method
using polyballs was described. We also compared continu-
ous methods and proved their equivalence in 2D when the
boundary of the polygonal approximation was included in
the Gabriel graph of the sample points.

We have also proposed an efficient method for symplify-
ing 3D noisy skeletons, The process is parametrized by an
angel and thus is size-invariant. Depending on the chosen
strategy, borders of the skeleton surface can be preserved,
or, on the contrary, removed so that an almost wireframe
figure is obtained. On the basis of our results, 313 skeletons
are very promising for 3D objects analysis as, for example,
the computation of distance between selected sites in a
chromosome. The use of 3D skeletons for shape matching
will be the subject of further research.

APPENDIX A: POLYBALLS

Computing the exact skeleton of a continuous shape is
a difficult problem. The solution is known only for some
simple geometrical shapes such as ellipses, parabolas, cylin-
ders. In 2D, much research effort has been expended on
computing the exact skeleton of polygons. The skeleton
of a polygon is made up of straightline segments and
portions of parabolic curves [2]. It can be computed in
O(n log n), where n designates the number of vertices on
the boundary [2, 39]. In 3D, the skeleton of a polyhedron
consists of pieces of quadrics [40, 41]. Its construction is
much more difficult.

In this section, the problem of finding the exact skeleton
is solved for a particular subset of continuous shapes
called polyballs.

Al. Structure of Polyballs

To simplify the following discussion, we call polyball
any finite union of balls. A polyball may have a very general
shape, formed of several connected components. In order
to describe the skeleton of a polyball, we first introduce
some definitions.

DermniTion 1. Let ¥ C R¥ be a polyball. The writing
y = Uiepy. 1y By is minimal if ¥ cannot be written with less
than & balls. The balls B; are said to be generating balls.
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Singular points

Disconnected ball

L

FIG. 11. 2I> polyballs and their associated skeletons. Examples of
maximal balls.

Among the generating balls, it will be useful to distin-
guish those having particular intersections with the others
{(see Fig. 11 and Fig. 12).

DerinrTiON 2. A generating ball B, is said to be discon-
nected if it intersects no other generating ball.

Derinmion 3. The generating balls B; and B; are said
to be quasi-disconnected if their intersection B; N B, # (&
intersects no other generating ball,

In the N-dimensional space, the boundary of Y has par-
ticular points, in finite number, located at the infersection
of at least N generating balls. These points, referred to as
singular points, are characterized as follows.

DermviTion 4. The point p is said to be a singular point
of Y C RV if and only if there exists at least N generating
balls B, ..., B such thatp € aY N B; -+ N B;.

A2, Skeletons of Polyballs

We state two theorems describing 2D and 3D skeletons
of polyballs. We prove that the skeleton of a polyball is

Disconnected ball

&

Singular points

Two quasi-disconnected balls

.

FIG. 12. 3D polyballs and their associated skeletons.
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made up of simple components such as line segments in
2D and polygons in 3D. In particular, it passes throught
the center of generating balls. Simple examples of polyballs
and skeletons are provided Figs. 11 and 12. Afterward,
generating balls are assumed not to be tangent.

THEOREM 3. Let Y C R? be a polyball. The skeleton of
Y is made up of the centers of the disconnected balls and
a subset of the Voronoi graph of its singular points. This
subject is formed of the points m € Y such that the closest
points to m on the boundary 9Y are singular points.

Proof. Let m be a point of the skeleton and let B be
the maximal ball with center m. As B is a maximal ball,
B has at least two contact points with the boundary of ¥.

Suppose first that all its contact points are singular
poinis. B is a ball passing through at least two singular
points and containing none. It results that »r lies on the
Voronoi graph of the singular points. Note thatif B touches
exactly two singular points, m lies on & Voronoi edge (Fig.
11a). If not, st is a Voronoi vertex (Fig. 11b).

Suppose now that one of the contact points is not a
singular point and belongs to the generating ball By. This
implies that B is also a maximal ball of By and therefore
B = By. If By is not disconnected, By passes through at
least two singular points and therefore m lies on the Voro-
noi graph of the singular points (Fig. 11c). If not, s is the
center of a disconnected ball (Fig. 11d).

Conversely, the center of any disconnected generating
ball is a point of the skeleton. Let mn € Y be a point of
the Voronoi graph of the singular points for which exists
a singular point p verifying d(m, aY) = d(m, p). The ball
with center mr and passing through p is a maximal ball,
which completes the proof. =

THeEOREM 4. In 3D, the skeleton of Y is made up of the
centers of the disconnected balls, the straightline segments
connecting the centers of the quasi-disconnected balls, and
a subset of the Voronoi graph of its singular points. Tlis
subset is formed of the points m € Y such that the closest
points to m on the boundary &Y are singular points.

Proof. Let m be a point of the skeleton and B the
maximal ball with center m1. As B is a maximal ball, B has
at least two contact points with Y.

Suppose that all its contact points are singular points.
As in the 2D case, m lies on the Voronoi graph of the
singular points. Note that if B touches exactly two singular
points, # describes a Voronoi polygon. If B touches exactly
three singular points, m describes a Voronoi edge. In the
other cases, m is a Voronoi vertex.

Suppose now that one of the contact points is located
at the intersection of exactly two quasi-disconnected balls
Bpand B, . Then, B touches the intersection circle of By and
B, . Therefore, m describes the line segment connecting the
centers of By and B,.
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FIG. 13. Ilustration for the proof of Theorem L.

Finally, suppose that onc of the contact points lies on
the boundary of a generating ball, B,. As in the 2D case,
one can infer that m is the center of the gencrating ball
By. Thus, m, as the center of By, may be the center of a
disconnected ball, a quasi-disconnected ball, or it may lie
on the Voronoi graph of the singular points.

The converse is proved the same way as in 2D. =

To conclude, the skeleton of a polyball has a very simple
structure, Its computation comes down to the computation
of a Voronoi graph which is a very famous problem of
computational geometry and for which cfficient algo-
rithms exist.

APPENDIX B: PROOF OF THEOREM 1

In this scction, Theorem 1 is demonstrated. As GG(E) C
Del(E), it Tollows that aP C Del( £).

To verify the two other relationships, wc first demon-
strate thal to each inner Delaunay triangle is always associ-
ated one inner Voronoi vertex and, conversely, the outer
Delaunay triangle is always associated to one outer Voro-
noi vertex.

Let (abc) be a Delaunay triangle and v is associated
Voronoi vertex (see Fig. 13a). It is assumed that v & (abc)
and that the points @ and v are both sides of the line (bc).
Let 111 be any point of the line segnment Jva[ and [ege,] be
aDelaunay edge passing through m. As (abc) is a Delaunay
triangle, the disk passing through a, &, and ¢ contains no
points of £ and, consequently, does not contain ey and ¢;.
Furthermore, as the Delaunay graph is a planar graph, it
can be statcd that e; # a, for i € {0, 1}. Thus, d(m, a) <
d{(m, e;) and a is contained by the disk having ege, as
diameter. Therefore, [ege;] is not a Gabriel graph’s edge
of the set £ and neither is a boundary edge of the polygonal
ohject P. To summarize, a path was found joining the
Voronoi vertex v to the Delaunay triangle (abc) such that
none of its points lies on the boundary of P. Consequently,
the Delaunay triangle (abe¢) and the Voronoi verfex v
are simultaneously, either included in £ or included in its
complement P

To conclude, it must be demonstrated that a Voronoi
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edge, which joins two inner Voronoi vertices v and v’, is

in

cluded in the shape. Let the segment [ab] be the dual

of the Voronoi edge [vv'] (Fig. 13b). From the previous,

th
th
in

e line segments [va[, [vb[, [v'a[, and [¢v'b[ donot intersect
e boundary of P. One can prove that any point in the
ner area of the quadrilateral [vav'b] is included in P.

Consequently, the line segment [vv'] is included in P.
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