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ABSTRACT

The skeleton of an object is the locus of the centers
of maximal discs included in the shape. The skeleton
provides a compact representation of objects, useful for
shape description and recognition. A well-known draw-
back of the skeleton transformation is its lack of con-
tinuity. This paper is concerned with the modeling of
noise that may affect objects and the concequence of
this noise on the skeleton. A graph (called the param-
eter graph) is introduced, on which branches due to
noise are characterized. We deduce from this prelimi-
nary study a method to simplify skeletons. It depends
on thresholds that can be chosen directly on the pa-
rameter graph associated to each skeleton.

1. INTRODUCTION

The skeleton of an object is a thin figure, centered in
the shape and which summarizes its general form [1].
It provides a synthetic representation of objects, useful
in image analysis for shape description.

A drawback of the skeleton transformation is its
lack of continuity. Noise on the boundary of an ob-
ject may significantly change the aspect of its skele-
ton. A simplification algorithm is therefore necessary
to remove peripherical branches having no perceptual
relevance.

The methods for simplification are generally based
on the same general scheme. Peripherical branches are
shortened by removing end points one after the other
while they verify a remouving criterion. By construc-
tion, the simplified skeleton is a subset of the initial
skeleton having the same class of homotopy.

Different removing criteria have been proposed. One
can for instance measure the difference between the ini-
tial shape and the shape reconstructed from the sim-
plified skeleton. Branches are shortened as long as this
difference remains smaller than a fixed threshold [2, 3].
More complex criteria may be found in [4].

Existing methods left unresolved some crucial as-
pect of the simplification problem. They do not study

the effect of noise on the skeleton. They depend on
thresholds that are difficult to find automatically as
they change with the objects.

In this paper, we raise three questions:

1. What type of noise may affect real objects ¢ A
model of noise is proposed that turns out to be
realistic for a large amount of objects.

2. What 1s the winfluence of this type of noise on the
skeleton ¢ The effect of noise on the skeleton is
studied and a characterization of noisy branches

1s deduced.

3. How to select parameters for the simplification ?
A graph is introduced on which the parameters
can directly be selected.

Section 2 recalls the definition of the skeleton and
describes a method to compute it. In section 3, a model
of noise is introduced and its effect on the skeleton is
studied. Section 4 proposes a simplification method.

2. COMPUTING THE SKELETON

By definition, the skeleton Sk(X) of an object X is the
locus of the centers of the maximal balls of X. A ball
B included in X 1s said to be maximal if there exists
no other ball included in X and containing B (Fig. 1).
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Figure 1: Vocabulary relative to skeletons.



Numerous methods have been proposed to extract
the skeleton. They can be classified in two main fami-
lies: discrete methods and continuous methods.

Discrete methods work directly on binary images.
The skeleton is a set of pixels that is computed using
distance transforms or morphological thinnings [5, 6].

Continuous methods are derived from computational
geometry. They are generally based on the computa-
tion of the Voronoi graph of a set of points located on
the boundary of the object [2, 7, 8].

In this paper, the skeleton is computed, using the
continuous approach described in [2]. The input is a set
of points {p; }?_; located on the boundary of a smooth
object X. The first step of the method consists in com-
puting the Voronoi graph of the boundary points p;.
The skeleton is defined as the set of the Voronoi edges
and vertices that are completely included in X (Fig 2).
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Figure 2: Voronoi graphs and approximated skeletons.

3. MODELING NOISE

Presence of parasite branches on the skeleton is gen-
erally explained by presence of noise on the boundary
of the object. It is therefore logical to model the type
of noise one would like to remove. In the following,
we consider that the shape X to skeletonize is sampled
by a set of points {¢;}"_, where each point ¢; can be
written as ¢; = p; + e;. The points p; belong to the
boundary of X and the vectors e; represent the added
noise around points. The skeleton is approached using
the Voronoi graph of the noisy points ¢;.

In order to explain the influence of this type of noise
on the computed skeleton, we introduce two prelimi-
nary definitions:

Definition 1 (Thickness) Let X be a continuous shape

and Sk(X) the skeleton of X. The thickness p(s) at a

point s of the skeleton is the radius of the maximal ball
centered on s.

Definition 2 (Bisector angle) Let X be a continu-
ous shape and Sk(X) the skeleton of X. Let s be a
simple pownt of the skeleton. The maximal ball cen-
tered on s touches the boundary of X at two contact
points py and py. The bisector angle o(s) is the angle
posp1 lying between 0 and w. If 5 is not a simple point
but a terminal point or an end point, the bisector angle
a(s) is computed by passing to the limit.

Figure 3: Bisector angle and thickness.

The bisector angle has remarkable properties [9]. Tt
equals m where the thickness is extremum and 0 at the
end points of the skeleton (Fig. 3).

In practice, if s designates a Voronoi vertex of the
approximated skeleton and [popips] its associated De-
launay triangle, the thickness p(s) and the bisector an-
gle a(s) can be approximated by:

p(s) = d(s,po) = d(s,p1) = d(s,p2)
a(s) = max(pospr, pisps, p2sPo)

In order to visualize the effect of noise, one can rep-
resent the vertices s of the skeleton on a graph entitled
the parameter graph in which vertices are plotted ac-
cording to p(s) against «(s) instead of their classical
Cartesian coordinates. Each vertex s of the skeleton is
associated with a point having coordinates («(s), p(s))
in the parameter graph.
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Figure 4: Skeleton of a synthetic object and its param-
eter graph.



When there is no noise (synthetic object of Fig. 4),
the skeleton structures are easily identified within the
parameter graph. End points lie on the straight-line
(a = 0) and branches are represented by curves.

When noise is added to the shape boundary (Fig.
5), the aspect of the parameter graph changes. Indeed,
most of the vertices that were initially lying on the
branches of the skeleton are now scattered next to the
bottom left of the parameter graph plotting an hyper-
bolic form.
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Figure 5: Skeleton of a noisy object, simplified skeleton
and the parameter graph.

The same phenomenon occurs with objects obtained
from binary images and prove the relevance of our noise
model. However, in the latter case, points organize
themselves in parallel strata (Fig. 7).

It is possible to explain the noise induced hyperbolic
form. Let s be a vertex of the skeleton, a and b the
two points of the boundary such that a(s) = asb and
p(s) = d(a,s) = d(b,s). The set of vertices s generated
by two boundary points a and & distant from d has
equation:
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If one plots p as a function of o with a fixed value
for d on the parameter graph, a curve is obtained which
perfectly fits the hyperbolic form (Fig. 6). With ob-
jects obtained from binary images, the distance d be-
tween two boundary points is quantified (owing to the
discrete representation of binary images). The presence

of strata in the hyperbolic form confirms the existence
of forbidden values for d.

Thus, the noise disturbs neighbourhood relation-
ships in the Voronoi graph. Boundary points that are
distant from d generate parasite branches on the skele-
ton. When noise remains small, d is also small. Per-
turbations due to noise stay local.
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Figure 6: Modeling noise with p =

4. PROPOSED CRITERION

A result of the previous section is that noisy vertices of
the skeleton are charaterized by a small bisector angle
or a small thickness. Consequently, we propose to re-
move an end point s of the current skeleton if the two
parameters a(s) and p(s) verify:

(a(s) < o) or (p(s) < po)

The proposed criterion depends on two thresholds «y
and pg. The first one, ag controls the lost of informa-
tion. If ag equals 0, the skeleton is never simplified.
The second threshold pg gives an indication of the size
of the object.

One can choose for instance ag = and pyp = b
for objects obtained from binary images. But, the two
thresholds can also be selected directly on the parame-
ter graph. Indeed, in this representation, our simplifi-
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cation method consists in removing end points located



below the thick line plotted on the parameter graphs
(Fig. 5 and 7). This line cut off the hypebolic form
from the rest of the graph.
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Figure 7: Skeletons of binary objects, simplified skele-
tons and parameter graphs.

5. CONCLUSION

In this paper, we analyse the influence of noise on
the skeleton. We deduce a characterization of noisy
branches and a simplification method for continuous
skeletons. The study of other noise models could be
the subject of further works.
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