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| Abstract

This paper presents an appreoach io epprozimate
ithe skeleton of continuous shapes either in 2D or 3D
space, The data required is a sampling of the boundary
‘of the shape.

i We call polyball any finite union of balls. A pre-
Himinary work on pelyballs shows that their skelelons
;consist of simple components (line segments in 2D and
ipolygons in 30D). To construct these components, only
the compulation of a Voronoi graph is required.

Recent papers have proposed 1o approzimate the
skeleton of continuous shapes using the Voronoi graph
of boundary points. An original reformulation of these
methods is presenied here, using polyballs. It allows to
butld a hierarchy of simplified skeletons.

An application in the freme of an European project
in the field of medicine and biology is also presented.
The skeleten by influence zones is computed in real
time, which valideies our approach.

1 Introduction

The notion of skeleton was first introduced by Blum
[4). The skeleton of an object is a thin figure centered
in the shape and which summarizes its general form.
It can be equivalent to the boundary representation
but allows an easier description of the shape.

Numerous methods have been proposed in order to
extract the skeleton. They can be classified in three
main families:

¢ Discrete methods. The shape is transmited to
us through a binary image. The skeleton is redefined
in the discrete space, and only discrete objects are
handled [1, 7, 12, 15].

e Semi-continuous methods. The shape is discerned
to us through a sampling of its boundary. The skeleton
Is approached by taking a subgraph of the Voronoi
graph of the sampling boundary points [5, 6, 10).

» Exact methods. Unlike the other methods, the
continuous shape is known and the exact skeleton is
searched. So far, this problem has been solved for very
few objects (polygons (9], ellipses)

This work concerns the two last points. Firstly, the
problem of computing the exact skeleton is solved for
a new subset of the 2D and 3D continuous shapes,
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called polyballs. Secondly, we propose an original way
to reformulate semi-continuous methods. Finally, we
propose to use skeletons for shape description.

1.1

R”™ designates the Euclidean n-dimensional space
and d the Euclidean distance. For any set of points
X € R", 30X denotes its boundary and X¢ its comple-
ment.

The skeleton Sk(X) of an object X € R” is the
locus of the centers of the maximal balls of X. A ball
B included in X is said to be maximal if there exists
no other ball included in X and containing B.

Notations and definitions

2 Polyballs

Computing the exact skeleton of a continucus shape
is a complex problem. In 2D space, the solution is
known only for some simple geometrical shapes. Lee
{9] has proved that the exact skeleton of a polygon
was made up of straight-line segments and portions of
parabolic curves. In 3D, the skeleton of a polyhedron
consists of pieces of quadrics [3].

In this section, the problem of finding the ex-
act skeleton is solved for a new subset of continuous
shapes: the polyballs,

2.1

By analogy with the polygons, we call polyball an
object obtained by a finite union of balls. Let ¥ be a
polyball of the nD space: ¥ = Ua‘e{ﬂ....,n] B;.

Note that ¥ is not necessarily simply connected,
nor connected. The balls B; are called generating
balls. Among the generating balls, it will be useful to
distinguish those having particular intersections with
the others. In order to simplify the classification, gen-
erating balls are assumed not to be tangent.

Polyballs and generating balls

Definition 1 /n 2D or 3D, a generating ball B; is
said to be disconnecled if il intersecis no other gener-
ating ball (Figures 1 and 2).

Definition 2 In 3D, the generating balls B; and B;
are said o be quasi-disconnected if their intersection
B; N Bj # § intersects no other generating ball,



2.2 Skeletons of 2D and 3D polybalis

In 2D as in 3D space, the boundary of ¥ has par-
ticular points, in finite number, located at the inter-
section of two or more generating balls. These points,
11*eferred to as singular points, are characterized as fol-
ows:

Definition 3 In 2D, p is a singular peind of Y <=
BB{,BJ' pEB.'ﬂBjﬂBY

. Singular points
Disconnected ball Z / . ;
Figure 1: Skeletons of 2D polyballs.

Definition 4 In 3D, p is a singular point of Y <=
HB{,Bj,Bk pE B ﬂB_.,' NByNoY

The two theorems below provide a constructive de-
scription of 2D and 3D skeletons using disconnected
balls, quasi-disconnected balls and singular points.
Simple examples of polyballs and skeletons are pro-
vided in figures 1 and 2.

Theorern 1 In 2D, the skeleton of Y is made up of
the ceniers of the disconnecied balls and a subsel of
the Voronoi graph of its singulur points. This subset
is formed of the straighi-line segments included in Y.

Theorem 2 In 3D, the skeleton of Y is made up
of the centers of the disconnected balls, the straight-
line segments connecting the ceniers of the two by two
quasi-disconnected balls and a subsel of the Voronoi
greph of its singular points. This subsel is formed of

the straight-line segments and polygons which are in-
cluded in Y.

Discormected ball Singular points

Two quasi-discormested balle

.

Figure 2: 3D simple polyballs and their skeletons.

Figure 3: A continuous shape, a samplingof its bound-
ary and the corresponding approached skeleton.

To conclude, the skeleton of a polyball is made
up of simple components as line segments in 2D and
polygons in 3D. Furthermore, its computation comes
down to the computation of the Voronoi graph which
is a very famous problem of computational geometry
[13] and for which exist efficient algorithms [3].

Thus, polyballs seem to be very interesting objects
to approximate continuous shapes. Such spherical rep-
resentations are useful for graphical display [11] and
modelisation of molecular surfaces [8].

3 Continuous shapes

In this section, we are considering equally 20 and
3D shapes, The possibility to use polyballs to ap-
proach continuous shapes is first discussed. Then, the
question whether the skeleton of a polyball can ap-
proximate the skeleton of a continuous shape is raised.

3.1 Approximating continuous shapes

Let X be a continuous shape of R® and £, a set of
points which sample its boundary. In order to measure
the quality of the sampling, we define the sampling
density, denoted w as the greatest number such that:
Ve e 80X, Jec Ey, d{z,e) < w!

We are looking for a polyball which approaches X.
To do so, the Voronoi graph of By, is first computed. A
collection of balls, circumscribed about the Delaunay
simplexes, can be derived from this computation. Let
Y, be the polyball formed by the above mentioned
balls whose centers belong to X. The convergence of
Yy to X is ensured if X 1s r-regular. A proof in 2D
space may be found in [6].

3.2 Approximating continuous skeletons

Assuming X to be regular enough (the boundary
is C?), Schmitt [14] has demonstrated that Delaunay
balls tend to maximal balls, and thus, the skeleton of
Y, tends to the skeleton of X.

Note that the polyball ¥,, and its skeleton can easily
be derived from the Voronoi graph of the sampling
points. The complexity is thus O(n.logn) in R? and
O(n?) in the worst case in R,

Figure 3 illustrates our skeletonization method
in 3D space. There were about 2000 sampling



Figure 4: A 2D shape, its approached skeleton and
the corresponding piling of simplified skeletons.

points. The computation takes b secondes on an IN-
DIGO RS54000 Silicon Graphics workstation. The ap-
proached skeleton has good properties: it is homotopic
to X, rotation invariant and thin. But, it is also sen-
sitive to small boundary disturbances.

A method to simplify noisy 2D and 3D skeletons
may be found in [2]. The extremities of the skeleton
(straight line segments in 2D and polygons in 3D) are
sequentially removed according to an angular crite-
rion. The piling of the different simplified skeletons
leads to a hierarchical representation useful for shape
description and pattern matching (Figure 4).

4 Application

Qur work has already been applied in the frame of
an European project for biology and medecine (ATM
program, IMPACT project No A2017 92-93).

Pathologists study histological samples under a mi-
croscope, including different structures such as cells
and glands (Figure 5). The local distribution of cells
in the intercellular liquid makes it possible to grade
the state of advancement of a pathology (hyperplasia,
cancer). To this end, it is necessary to assign cach
gland a zone of influence, in which a sub-population
of cells may be quantified and studied.

Figure 5: User interface facilities and Skiz.

Finally, the problem is to compute in 20 space the
skeleton by influence zones, denoted Skiz, of a set of
glands approximated by a set of polygons. As the Skiz
is included in the skeleton of X¢, its computation is
a particular case of our previous work and is done in
real time on a compatible 486 PC (see Figure 5).

5 Conclusion

New objects called polyballs have been studied.
The skeleton of a polyball is proved to have simple
components, which allows its exact computation ei-
ther in 2D or 3D space. For this reason, polyballs
are very interesting objects to approximate continu-
ous shapes. If correctly simplified, 3D skeletons are
promised to be useful for analysing 3D objects.

References

[1] C. Arcelli and M. Frucci, “Reversible skeletonization by
(5,7,11)-erosion”, Proc. Visuel Form Analysis end Recoy-
nition, Capri, May 27-30, pp. 21-28, 1991.

{2] D. Attali and A. Montanvert, “Semicontinucus Skeletons
of 20 and 3D Shapes” Proc. Visual Form Analysis and
Recognition, Capri, May 30 - June 2, 1994,

[3] E. Bertin and J.M, Chassery, “3D Voronoi Diagram: Appli-
cation to segmentation”, Proc. !1th International Confer-
ence on Pattern Recognition, The Netherlands, pp. 197-200,
1992.

[¢] H. Blum and R.N. Nagel, “Shape description using weighted
symmetric axis features”, Pattern Recognition, Vol. 10, pp.
167-180, 1973.

5] J.DD. Boissonnat et B. Geiger, “Three dimensional recon-
g
struction of complex shapes based on the Detaunay trian-
gulation”, Rapport de Recherche N 1697, May 1992.

[6] J.W. Brandt and V.R. Algazi, “Continuous Skeleton Com-
putation by Voronoi Diagram™, CVGIP : Image Under-
stending, Vol. 55, No 3, pp. 329-337, 1992,

{7] J. -M. Chassery et A. Montanvert, Géoméirie discréte en
analyse d'images, Editions Hermés, 1991,

[8] M.L. Connoily, “Molecular Interstitial Skeleton”, Comput-
ers Chem., Vol 15, No 1, pp.37-45, 1991.

[9} D.T. Lee, “Medial axis Transformation of a Planar Shape”,
IEEE Transaclions on Pattern Analysis end Machine In-
telligence, Vol. PAMI-4, No 4, pp. 363-369, July 1982.

[10] R. Ogniewicz and M. Ilg, “Voronoi Skeletons : Theory and
Applications”, IEEE Computer Vision and Pattern Recog-
nition, Champaign, llinois, June 15-18, pp. 63-69, 1992,

[11] J. O'Rourke and N. Badler, “Decomposition of Three-
Dimensional Objects into Spheres”, IEEE Transactlions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-1,
No 3, July 1979.

[12] S. M. Pizer, W. R. Oliver and S. H. Bloomberg, “Hierarchi-
cal Shape Description Via the Multiresolution Symmetric
Axis Transform”, JEEE Transactions on Potiern Analysis
and Machine Inielligence, Vol. 9, No 4, pp. 505-511, 1987.

(13} F.P. Preparata and M.I. Shamos, “Computational Geome-
try : an Introduction”, Texts and Monographs in Compuler
Science, Springer-Verlag ed., 1988.

[14] M. Schmitt and J. Mattioli, Morphologie Maethématique,
Masson ed., 1993.
[15] L. Vincent, “Efficient computation of various types of

skeletons”, Proc. SPIE’s 14{4{5 Medical Imaging V, San
Jose, CA, February 1891.



